题目内容
【题目】如图,已知点O是六边形ABCDEF的中心,图中所有的三角形都是等边三角形,则下列说法正确的是( )
A. △ODE绕点O顺时针旋转60°得到△OBC B. △ODE绕点O逆时针旋转120°得到△OAB
C. △ODE绕点F顺时针旋转60°得到△OAB D. △ODE绕点C逆时针旋转90°得△OAB
【答案】C
【解析】
由于点O是六边形ABCDEF的中心,图中所有的三角形都是等边三角形,根据旋转的性质得到△ODE绕点O顺时针旋转120°得到△OBC,于是可对A、B进行判断;△ODE绕点F顺时针旋转60°时,点O旋转到点A得,点E旋转到点O,点D旋转到点B,则可对C进行判断;利用ODE绕点C顺时针旋转60°得到△OBC可对D进行判断.
A、因为点O是六边形ABCDEF的中心,图中所有的三角形都是等边三角形,所以△ODE绕点O顺时针旋转120°得到△OBC,所以A选项错误;
B、因为点O是六边形ABCDEF的中心,图中所有的三角形都是等边三角形,所以△ODE绕点O顺时针旋转120°得到△OBC,所以B选项错误;
C、因为点O是六边形ABCDEF的中心,图中所有的三角形都是等边三角形,所以△ODE绕点F顺时针旋转60°时,点O旋转到点A得,点E旋转到点O,点D旋转到点B,所以C选项正确;
D、因为点O是六边形ABCDEF的中心,图中所有的三角形都是等边三角形,所以△ODE绕点C顺时针旋转60°得到△OBC,所以D选项错误.
故选:C
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200-2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.