题目内容
【题目】在正方形中,动点分别从两点同时出发,以相同的速度在直线上移动;
(1)如图①,当分别移动到边的延长线上时,连接和与的关系为____ ;
(2)如图②,己知正方形的边长为点和分别从点同时出发,以相同的速度沿方向向终点和运动,连接和,交于点,请你画出点运动路线的草图,试求出线段的最小值.
(3)如图③,在(2)的条件下,求周长的最大值;
【答案】(1)AE=DF,AE⊥DF;(2)点运动路线见解析;线段CP的最小值为;(3)△APD周长的最大值为.
【解析】
(1)根据正方形的性质利用SAS证明△ADE≌△DCF,可得AE=DF,∠DAE=∠CDF,延长FD交AE于点G,求出∠ADG+∠DAE=90°即可;
(2)根据AE⊥DF可知点P在以AD为直径的圆弧上,当O、C、P三点共线时,线段CP最小,求出OC即可得到线段CP的最小值;
(3)如图③,以AD为斜边向外作等腰直角△ADG,过点G作GM⊥AE于M,GN⊥FD交FD的延长线于点N,连接GP,首先证明△AMG≌△DNG,四边形GMPN是正方形,然后求出PA+PD=2GM,且GM的最大值=AG=,再由三角形周长公式可得答案.
解:(1)∵四边形ABCD是正方形,
∴AD=DC,∠ADE=∠DCF=90°,
∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,
∴DE=CF,
∴△ADE≌△DCF(SAS),
∴AE=DF,∠DAE=∠CDF,
延长FD交AE于点G,如图①所示,则∠CDF+∠ADG=90°,
∴∠ADG+∠DAE=90°,
∴∠AGD=90°,
∴AE⊥DF,
故答案为:AE=DF,AE⊥DF;
(2)由(1)可知AE⊥DF,
∴在点E、F的运动过程中,∠APD始终是90°,
∴点P在以AD为直径的圆弧上,即劣弧DH,如图所示,
设圆心为O,连接OC,则O、C、P三点共线时,线段CP最小,
∵圆心O为AD中点,正方形的边长为4,
∴OA=OD=OP=2,
∴OC=,
∴线段CP的最小值为:;
(3)如图③,以AD为斜边向外作等腰直角△ADG,过点G作GM⊥AE于M,GN⊥FD交FD的延长线于点N,连接GP,
∵∠GMP=∠MPN=∠N=90°,
∴四边形GMPN是矩形,
∴∠MGN=∠AGD=90°,
∴∠AGM=∠DGN,
∵∠AMG=∠DNG=90°,AG=DG,
∴△AMG≌△DNG(AAS),
∴AM=DN,MG=NG,
∴矩形GMPN是正方形,
∴PA+PD=PM+AM+PN-DN=PM+PN=2PM=2GM,
∵GM≤AG,
∴GM的最大值=AG=,
∴PA+PD的最大值为,
∴△APD周长的最大值为:.