题目内容

【题目】如图,正方形ABCD的边长是2,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为

【答案】
【解析】解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,

∵DD′⊥AE,

∴∠AFD=∠AFD′,

∵AF=AF,∠DAE=∠CAE,

∴△DAF≌△D′AF,

∴D′是D关于AE的对称点,AD′=AD=2,

∴D′P′即为DQ+PQ的最小值,

∵四边形ABCD是正方形,

∴∠DAD′=45°,

∴AP′=P′D′,

∴在Rt△AP′D′中,

P′D′2+AP′2=AD′2,AD′2=4,

∵AP′=P′D',

2P′D′2=AD′2,即2P′D′2=4,

∴P′D′= ,即DQ+PQ的最小值为

所以答案是:

【考点精析】认真审题,首先需要了解正方形的性质(正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形),还要掌握轴对称-最短路线问题(已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网