ÌâÄ¿ÄÚÈÝ
ÔÚƽÃæÖ±½Ç×ø±êϵÄÚ£¬¶þ´Îº¯Êýy=ax2+bx+cͼÏóÓëxÖá½»ÓÚA£¨-1£¬0£©£¬B£¨4£¬0£©Á½µã£¬ÓëyÖá½»ÓÚµãC£¨0£¬4£©£¬Ö±Ïßy=x+1Óë¶þ´Îº¯ÊýµÄͼÏó½»ÓÚA¡¢DÁ½µã£¬
£¨1£©Çó³ö¶þ´Îº¯ÊýµÄ½âÎöʽÒÔ¼°DµãµÄ×ø±ê£»
£¨2£©µãPÊÇÖ±ÏßADÉÏ·½Å×ÎïÏßÉϵÄÒ»µã£¬Á¬½áPB£¬½»ADÓÚµãE£¬Ê¹
=
£¬Çó³ö·ûºÏÒªÇóµÄµãPµÄ×ø±ê£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Á¬½áPD£¬
¢ÙÖ±½Óд³öPDÓëADµÄ¹Øϵ
¢ÚµãMÊÇƽÃæÄÚÒ»µã£¬Ê¹¡÷PDM¡×¡÷ADB£¬Çó·ûºÏÒªÇóµÄËùÓеãMµÄ×ø±ê£®
£¨1£©Çó³ö¶þ´Îº¯ÊýµÄ½âÎöʽÒÔ¼°DµãµÄ×ø±ê£»
£¨2£©µãPÊÇÖ±ÏßADÉÏ·½Å×ÎïÏßÉϵÄÒ»µã£¬Á¬½áPB£¬½»ADÓÚµãE£¬Ê¹
PE |
BE |
4 |
5 |
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Á¬½áPD£¬
¢ÙÖ±½Óд³öPDÓëADµÄ¹Øϵ
PD¡ÍAD
PD¡ÍAD
£»¢ÚµãMÊÇƽÃæÄÚÒ»µã£¬Ê¹¡÷PDM¡×¡÷ADB£¬Çó·ûºÏÒªÇóµÄËùÓеãMµÄ×ø±ê£®
·ÖÎö£º£¨1£©°ÑµãA¡¢B¡¢CµÄ×ø±ê´úÈë¶þ´Îº¯Êý½âÎöʽ£¬ÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ½â´ð£¬ÔÙÓëÖ±Ïßy=x+1ÁªÁ¢Çó½â¼´¿ÉµÃµ½µãDµÄ×ø±ê£»
£¨2£©ÉèPF¡ÎAD½»xÖáÓÚF£¬¸ù¾ÝƽÐÐÏß·ÖÏ߶γɱÈÀý¶¨ÀíÇó³öAFµÄ³¤¶È£¬ÔÙÇó³öÖ±ÏßPFµÄ½âÎöʽ£¬È»ºóÓë¶þ´Îº¯Êý½âÎöʽÁªÁ¢Çó½â¼´¿ÉµÃµ½µãPµÄ×ø±ê£»
£¨3£©¢ÙÉèÖ±ÏßPDµÄ½âÎöʽΪy=kx+b£¬ÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏߵĽâÎöʽ£¬´Ó¶øµÃµ½Ö±ÏßPDÓëxÖáµÄ¼Ð½ÇΪ45¡ã£¬Åж¨PDÓëAD´¹Ö±£»
¢ÚÀûÓù´¹É¶¨ÀíÁÐʽÇó³öAD£¬¸ù¾ÝµãP¡¢DµÄ×ø±êÇó³öPDµÄ³¤¶È£¬È»ºó¸ù¾ÝÖ±ÏßPDÓëxÖáµÄ¼Ð½ÇΪ45¡ã£¬ÀûÓÃÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÁÐʽÇó³öPMµÄ³¤¶È£¬·Ö¢ÙµãMÔÚPDÏ·½Ê±£¬PM¡ÎyÖᣬÇó³öµãMµÄ×Ý×ø±ê£¬´Ó¶øµÃ½â£»¢ÚµãMÔÚPDÉÏ·½Ê±£¬PM¡ÎxÖᣬÇó³öµãMµÄºá×ø±ê£¬´Ó¶øµÃ½â£®
£¨2£©ÉèPF¡ÎAD½»xÖáÓÚF£¬¸ù¾ÝƽÐÐÏß·ÖÏ߶γɱÈÀý¶¨ÀíÇó³öAFµÄ³¤¶È£¬ÔÙÇó³öÖ±ÏßPFµÄ½âÎöʽ£¬È»ºóÓë¶þ´Îº¯Êý½âÎöʽÁªÁ¢Çó½â¼´¿ÉµÃµ½µãPµÄ×ø±ê£»
£¨3£©¢ÙÉèÖ±ÏßPDµÄ½âÎöʽΪy=kx+b£¬ÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏߵĽâÎöʽ£¬´Ó¶øµÃµ½Ö±ÏßPDÓëxÖáµÄ¼Ð½ÇΪ45¡ã£¬Åж¨PDÓëAD´¹Ö±£»
¢ÚÀûÓù´¹É¶¨ÀíÁÐʽÇó³öAD£¬¸ù¾ÝµãP¡¢DµÄ×ø±êÇó³öPDµÄ³¤¶È£¬È»ºó¸ù¾ÝÖ±ÏßPDÓëxÖáµÄ¼Ð½ÇΪ45¡ã£¬ÀûÓÃÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÁÐʽÇó³öPMµÄ³¤¶È£¬·Ö¢ÙµãMÔÚPDÏ·½Ê±£¬PM¡ÎyÖᣬÇó³öµãMµÄ×Ý×ø±ê£¬´Ó¶øµÃ½â£»¢ÚµãMÔÚPDÉÏ·½Ê±£¬PM¡ÎxÖᣬÇó³öµãMµÄºá×ø±ê£¬´Ó¶øµÃ½â£®
½â´ð£º½â£º£¨1£©¡ß¶þ´Îº¯Êýy=ax2+bx+cͼÏó¾¹ýA£¨-1£¬0£©£¬B£¨4£¬0£©£¬C£¨0£¬4£©£¬
¡à
£¬
½âµÃ
£¬
ËùÒÔ£¬¶þ´Îº¯ÊýµÄ½âÎöʽΪy=-x2+3x+4£¬
ÁªÁ¢
£¬
½âµÃ
£¨ÎªµãA×ø±ê£©£¬
£¬
ËùÒÔ£¬µãDµÄ×ø±êΪ£¨3£¬4£©£»
£¨2£©ÉèPF¡ÎAD½»xÖáÓÚF£¬
Ôò
=
£¬
¡ßA£¨-1£¬0£©£¬B£¨4£¬0£©£¬
¡àAB=4-£¨-1£©=5£¬
¡à
=
£¬
½âµÃAF=4£¬
¡àOF=4+1=5£¬
µãFµÄ×ø±êΪ£¨-5£¬0£©£¬
Ò×ÇóÖ±ÏßPFµÄ½âÎöʽΪy=x+5£¬
ÁªÁ¢
£¬
½âµÃ
£¬
ËùÒÔ£¬µãPµÄ×ø±êΪ£¨1£¬6£©£»
£¨3£©¢ÙÉèÖ±ÏßPDµÄ½âÎöʽΪy=kx+b£¬
Ôò
£¬
½âµÃ
£¬
ËùÒÔ£¬Ö±ÏßPDµÄ½âÎöʽΪy=-x+7£¬
¡àÖ±ÏßPDÓëxÖáµÄ¸º·½Ïò¼Ð½ÇΪ45¡ã£¬
¡ßÖ±Ïßy=x+1ÓëxÖáµÄÕý·½Ïò¼Ð½ÇΪ45¡ã£¬
¡àPD¡ÍAD£»
¢Ú¸ù¾Ý¹´¹É¶¨Àí£¬AD=
=4
£¬
¡ßP£¨1£¬6£©£¬D£¨3£¬4£©£¬
¡àPD=
=2
£¬
¡ß¡ÏDAB=45¡ã£¬PDÓëxÖḺ·½Ïò¼Ð½ÇΪ45¡ã£¬
¡àPM¡ÎyÖá»òPM¡ÎxÖᣬ
¡ß¡÷PDM¡×¡÷ADB£¬
¡à
=
£¬
¼´
=
£¬
½âµÃPM=
£¬
¢ÙµãMÔÚPDÏ·½Ê±£¬PM¡ÎyÖᣬµãMµÄ×Ý×ø±êΪ6-
=
£¬
´Ëʱ£¬µãMµÄ×ø±êΪM1£¨1£¬
£©£¬
¢ÚµãMÔÚPDÉÏ·½Ê±£¬PM¡ÎxÖᣬµãMµÄºá×ø±êΪ1+
=
£¬
´Ëʱ£¬µãMµÄ×ø±êΪM2£¨
£¬6£©£¬
×ÛÉÏËùÊö£¬µãMµÄ×ø±êΪ£¨1£¬
£©»ò£¨
£¬6£©Ê±£¬¡÷PDM¡×¡÷ADB£®
¡à
|
½âµÃ
|
ËùÒÔ£¬¶þ´Îº¯ÊýµÄ½âÎöʽΪy=-x2+3x+4£¬
ÁªÁ¢
|
½âµÃ
|
|
ËùÒÔ£¬µãDµÄ×ø±êΪ£¨3£¬4£©£»
£¨2£©ÉèPF¡ÎAD½»xÖáÓÚF£¬
Ôò
AF |
AB |
PE |
BE |
¡ßA£¨-1£¬0£©£¬B£¨4£¬0£©£¬
¡àAB=4-£¨-1£©=5£¬
¡à
AF |
5 |
4 |
5 |
½âµÃAF=4£¬
¡àOF=4+1=5£¬
µãFµÄ×ø±êΪ£¨-5£¬0£©£¬
Ò×ÇóÖ±ÏßPFµÄ½âÎöʽΪy=x+5£¬
ÁªÁ¢
|
½âµÃ
|
ËùÒÔ£¬µãPµÄ×ø±êΪ£¨1£¬6£©£»
£¨3£©¢ÙÉèÖ±ÏßPDµÄ½âÎöʽΪy=kx+b£¬
Ôò
|
½âµÃ
|
ËùÒÔ£¬Ö±ÏßPDµÄ½âÎöʽΪy=-x+7£¬
¡àÖ±ÏßPDÓëxÖáµÄ¸º·½Ïò¼Ð½ÇΪ45¡ã£¬
¡ßÖ±Ïßy=x+1ÓëxÖáµÄÕý·½Ïò¼Ð½ÇΪ45¡ã£¬
¡àPD¡ÍAD£»
¢Ú¸ù¾Ý¹´¹É¶¨Àí£¬AD=
(3+1)2+42 |
2 |
¡ßP£¨1£¬6£©£¬D£¨3£¬4£©£¬
¡àPD=
(1-3)2+(6-4)2 |
2 |
¡ß¡ÏDAB=45¡ã£¬PDÓëxÖḺ·½Ïò¼Ð½ÇΪ45¡ã£¬
¡àPM¡ÎyÖá»òPM¡ÎxÖᣬ
¡ß¡÷PDM¡×¡÷ADB£¬
¡à
PM |
AB |
PD |
AD |
¼´
PM |
5 |
2
| ||
4
|
½âµÃPM=
5 |
2 |
¢ÙµãMÔÚPDÏ·½Ê±£¬PM¡ÎyÖᣬµãMµÄ×Ý×ø±êΪ6-
5 |
2 |
7 |
2 |
´Ëʱ£¬µãMµÄ×ø±êΪM1£¨1£¬
7 |
2 |
¢ÚµãMÔÚPDÉÏ·½Ê±£¬PM¡ÎxÖᣬµãMµÄºá×ø±êΪ1+
5 |
2 |
7 |
2 |
´Ëʱ£¬µãMµÄ×ø±êΪM2£¨
7 |
2 |
×ÛÉÏËùÊö£¬µãMµÄ×ø±êΪ£¨1£¬
7 |
2 |
7 |
2 |
µãÆÀ£º±¾ÌâÊǶþ´Îº¯Êý×ÛºÏÌâÐÍ£¬Ö÷Òª¿¼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ£¬ÁªÁ¢Á½º¯Êý½âÎöʽÇó½»µã×ø±ê£¬Æ½ÐÐÏß·ÖÏ߶γɱÈÀý¶¨Àí£¬ÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýµÄÐÔÖÊ£¬Á½µã¼äµÄ¾àÀ빫ʽ£¬£¨2£©¿¼Âǵ½ÀûÓÃPF¡ÎAD£¬¸ù¾ÝƽÐÐÏß·ÖÏ߶γɱÈÀý¶¨ÀíÇó³öÖ±ÏßPFµÄ½âÎöʽÊǽâÌâµÄ¹Ø¼ü£¬£¨3£©ÅжϳöPM¡ÎyÖá»òPM¡ÎxÖáÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿