题目内容
如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA= 度.
考点:多边形内角与外角,平行线的性质
专题:
分析:首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可.
解答:解:∵正五边形的外角为360°÷5=72°,
∴∠C=180°-72°=108°,
∵CD=CB,
∴∠CDB=36°,
∵AF∥CD,
∴∠DFA=∠CDB=36°,
故答案为:36.
∴∠C=180°-72°=108°,
∵CD=CB,
∴∠CDB=36°,
∵AF∥CD,
∴∠DFA=∠CDB=36°,
故答案为:36.
点评:本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.
练习册系列答案
相关题目