题目内容

11.如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于D点,则∠DBC的度数是(  )
A.15°B.20°C.25°D.30°

分析 根据等腰三角形两底角相等求出∠ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,根据等边对等角的性质可得∠ABD=∠A,然后求解即可.

解答 解:∵AB=AC,∠A=40°,
∴∠ABC=$\frac{1}{2}$(180°-∠A)=$\frac{1}{2}$(180°-50°)=65°,
∵MN垂直平分线AB,
∴AD=BD,
∴∠ABD=∠A=50°,
∴∠DBC=∠ABC-∠ABD=65°-50°=15°.
故选A.

点评 本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形两底角相等的性质,等边对等角的性质,是基础题,熟记性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网