题目内容
如图,∠1+∠2=180°,则l1_____l2.(填∥、⊥)
已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.
(1)求证:方程有两个不相等的实数根.
(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.
已知函数y=(1-2k)x是正比例函数,且y随x的增大而减小,那么k的取值范围是( )
A. k< B. k> C. k>0 D. k<1
小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了1 00个成年人,结果其中有15个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是( )
A. 调查的方式是普查
B. 本地区只有85个成年人不吸烟
C. 样本是15个吸烟的成年人
D. 本地区约有15%的成年人吸烟
已知,x=3、y=2是方程组的解,则a=_____,b=_____
如图所示是用硬纸板做成的四个完全相同的直角三角形和一个边长为c的正方形,直角三角形两条直角边的长分别是a,b,斜边的长为c,请你将它们拼成一个能推导勾股定理的图形.
(1)画出拼成的这个图形的示意图;
(2)推导勾股定理.
用同样大小的小正方形纸片,按下图的方式拼正方形:
规律:第①个图形中有1个小正方形;
第②个图形比第①个图形多3个小正方形;
第③个图形比第②个图形多5个小正方形;……
第(n+1)个图形比第n个图形多________个小正方形;
可发现以下结论:(1)1+3+5+……+(2n-1)= ____________;
如图,矩形OABC的边OA,OC分别与坐标轴重合,并且点B的坐标为.将该矩形沿OB折叠,使得点A落在点E处,OE与BC的交点为D.
(1)求证:△OBD为等腰三角形;
(2)求点E的坐标;
(3)坐标平面内是否存在一点F,使得以点B,E,F,O为顶点的四边形是平行四边形,若存在,请直接写出点F的坐标;若不存在,请说明理由.
(背景)如图(a),△ABC与△ADE均是顶角为40°的等腰三角形,BC,DE分别是底边,求证:BD=CE.
(探究)如图(b),△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
①∠AEB的度数为________;②线段BE与AD之间的数量关系是________.
(拓展)如图(c),△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE.
①求∠AEB的度数;
②请直接写出线段CM,AE,BE之间的数量关系.