题目内容

【题目】如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.

(1)求DC的长

(2)求AB的长

(3)求证△ABC是直角三角形.

【答案】(1)12;(2)25;(3)证明见解析.

【解析】试题分析:(1)在RT△BCD中运用勾股定理即可求出CD的长;
(2)在RT△ACD中运用勾股定理即可求出AD的长;
(3)已知△ABC的三边,根据勾股定理的逆定理即可判定△ABC是直角三角形.
试题解析:(1)在RT△BCD中,∵∠CDB=90°,BC=15,BD=9,
∴CD==12;
(2)在RT△ACD中,∵∠CDA=90°,AC=20,CD=12,
∴AD==16

所以AB=AD+DB=25;
(3)在△ABC中,∵AC=20,BC=15,AB=AD+DB=16+9=25,
∴AC2+BC2=400+225=625=252=AB2
∴△ABC是直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网