题目内容
【题目】对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“理想值”,记作.如的“理想值”.
(1)①若点在直线上,则点的“理想值”等于_______;
②如图,,的半径为1.若点在上,则点的“理想值”的取值范围是_______.
(2)点在直线上,的半径为1,点在上运动时都有,求点的横坐标的取值范围;
(3),是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值.(要求画图位置准确,但不必尺规作图)
【答案】(1)①﹣3;②;(2);(3)
【解析】
(1)①把Q(1,a)代入y=x-4,可求出a值,根据理想值定义即可得答案;②由理想值越大,点与原点连线与轴夹角越大,可得直线与相切时理想值最大,与x中相切时,理想值最小,即可得答案;(2)根据题意,讨论与轴及直线相切时,LQ 取最小值和最大值,求出点横坐标即可;(3)根据题意将点转化为直线,点理想值最大时点在上,分析图形即可.
(1)①∵点在直线上,
∴,
∴点的“理想值”=-3,
故答案为:﹣3.
②当点在与轴切点时,点的“理想值”最小为0.
当点纵坐标与横坐标比值最大时,的“理想值”最大,此时直线与切于点,
设点Q(x,y),与x轴切于A,与OQ切于Q,
∵C(,1),
∴tan∠COA==,
∴∠COA=30°,
∵OQ、OA是的切线,
∴∠QOA=2∠COA=60°,
∴=tan∠QOA=tan60°=,
∴点的“理想值”为,
故答案为:.
(2)设直线与轴、轴的交点分别为点,点,
当x=0时,y=3,
当y=0时,x+3=0,解得:x=,
∴,.
∴,,
∴tan∠OAB=,
∴.
∵,
∴①如图,作直线.
当与轴相切时,LQ=0,相应的圆心满足题意,其横坐标取到最大值.
作轴于点,
∴,
∴.
∵的半径为1,
∴.
∴,
∴.
∴.
②如图
当与直线相切时,LQ=,相应的圆心满足题意,其横坐标取到最小值.
作轴于点,则.
设直线与直线的交点为.
∵直线中,k=,
∴,
∴,点F与Q重合,
则.
∵的半径为1,
∴.
∴.
∴,
∴.
∴.
由①②可得,的取值范围是.
(3)∵M(2,m),
∴M点在直线x=2上,
∵,
∴LQ取最大值时,=,
∴作直线y=x,与x=2交于点N,
当M与ON和x轴同时相切时,半径r最大,
根据题意作图如下:M与ON相切于Q,与x轴相切于E,
把x=2代入y=x得:y=4,
∴NE=4,OE=2,ON==6,
∴∠MQN=∠NEO=90°,
又∵∠ONE=∠MNQ,
∴,
∴,即,
解得:r=.
∴最大半径为.
【题目】某中学的一个数学兴趣小组在本校学生中开展了主题为“雾霾知多少”的专题调查括动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“A.非常了解”、“B.比较了解”、“C.基本了解”、“D.不太了解”四个等级,将所得数据进行整理后,绘制成如下两幅不完整的统计图表,请你结合图表中的信息解答下列问题
等级 | A | B | C | D |
频数 | 40 | 120 | 36 | n |
频率 | 0.2 | m | 0.18 | 0.02 |
(1)表中m= ,n= ;
(2)扇形统计图中,A部分所对应的扇形的圆心角是 °,所抽取学生对丁雾霾了解程度的众数是 ;
(3)若该校共有学生1500人,请根据调查结果估计这些学生中“比较了解”人数约为多少?
【题目】某学校组织七年级学生进行“垃圾分类”知识测试,现随机抽取部分学生的成绩进行统计,并绘制如下频数分布表以及频数分布直方图.
分数档 | 分数段/分 | 频数 | 频率 |
A | 90<x≤100 | a | 0.12 |
B | 80<x≤90 | b | 0.18 |
C | 70<x≤80 | 20 | c |
D | 60<x≤70 | 15 | d |
请根据以上信息,解答下列问题:
(1)已知A,B档的学生人数之和等于D档学生人数,求被抽取的学生人数,并把频数分布直方图补充完整.
(2)该校七年级共有200名学生参加测试,请估计七年级成绩在C档的学生人数.
(3)你能确定被抽取的这些学生的成绩的众数在哪一档吗?请说明理由.