题目内容

【题目】已知:△ABC内接于⊙O,连接AO并延长交BC于点D.
(1)如图1,求证;∠ABC+∠CAD=90°;

(2)如图2,过点D作DE⊥AB于E,若∠ADC=2∠ACB.求证:AC=2DE;

(3)如图3,在(2)的条件下,连接BO交DE于点F,延长ED交⊙O于点G,连接AG,若AC=6 ,BF=OD,求线段AG的长.

【答案】
(1)

证明:如图1中,延长AD交⊙O于点M,连接MC.

∵AM为⊙O的直径,

∴∠ACM=90°,

∴∠ABC=∠AMC,

∵∠AMC+∠MAC=90°,

∴∠B+∠CAD=90°.


(2)

证明:如图2中,过点O作OH⊥AC于H,连接BO.

∴∠AOB=2∠ACB,

∵∠ADC=2∠ACB,

∴∠AOB=∠ADC,

∴∠BOD=∠BDO,

∴BD=BO,

∵∠BED=∠AHO,∠ABD=∠AOH,

∴△BDE≌△AOH,

∴DE=AH,

∵OH⊥AC,

∴AH=CH= AC,

∴AC=2DE.


(3)

证明:如图3中,过点O作ON⊥EG于N,OT⊥AB于T,连接OG.

∵AC=6 ,AC=2DE,

∴DE=3

∵OA=OB,

∴∠ABO=∠BAO,

∵∠ABO+∠BFE=90°,∠BAO+∠ADE=90°,

∴∠BFE=∠OFD=∠ODF,

∴OF=OD,

∵BF=OD,

∴OF=OD=BF,

∴△BFE≌△OFN,

∴BE=ON EF=FN

∵OF=OD,ON⊥FD,

∴EF=FN=ND=

∵BE=ON,OG=BD,

∴△BED≌△NOG,

∴ED=NG,

∴EG=5

∵ON⊥EG OT⊥AB DE⊥AB,

∴四边形ONET为矩形,

∴BE=ET=ON,

∵OT⊥AB,

∴AT=BT,AE=3BE,

设AO=BD=r,OD= r,AD= r

在Rt△AED中,AE2=AD2﹣ED2

在Rt△BED中,BE2=BD2﹣ED2

即( r)2﹣(3 2=9[( r)2﹣(3 2],

r=4 或r=﹣4 (舍去),

∴AE=15,

在△AEG中,AG= =10


【解析】(1)如图1中,延长AD交⊙O于点M,连接MC.首先证明∠ACM=90°,再证明∠ABC=∠M即可解决问题.(2)如图2中,过点O作OH⊥AC于H,连接BO.想办法证明△BDE≌△AOH即可解决问题.(3)如图3中,过点O作ON⊥EG于N,OT⊥AB于T,连接OG.由△BFE≌△OFN,推出BE=ON EF=FN由OF=OD,ON⊥FD,推出EF=FN=ND= ,由△BED≌△NOG,推出ED=NG,再证明AE=3BE,设AO=BD=r,OD= r,AD= r在Rt△AED中,AE2=AD2﹣ED2 , 在Rt△BED中,BE2=BD2﹣ED2 , 即( r)2﹣(3 2=9[( r)2﹣(3 2],求出r即可解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网