题目内容
【题目】如图,正方形ABCD的边长为3a,两动点E,F分别从顶点B,C同时开始以相同速度沿边BC,CD运动,与△BCF相应的△EGH在运动过程中始终保持△EGH≌△BCF,对应边EG=BC,B,E,C,G在一条直线上.
(1)若BE=a,求DH的长;
(2)当E点在BC边上的什么位置时,△DHE的面积取得最小值?并求该三角形面积的最小值.
【答案】(1)a;(2)E为BC的中点时,a2
【解析】
(1)可通过构建直角三角形求解.连接FH,则FH∥BE且FH=BE,FH⊥CD.因此三角形DFH为直角三角形.
点E、F分别从顶点B、C同时开始以相同速度沿BC、CD运动,那么DF=3a-a=2a,DF=2a,FH=a,根据勾股定理就求出了DH的长.
(2)设BE=x,△DHE的面积为y,通过三角形DHE的面积=三角形CDE的面积+梯形CDHG的面积-三角形EGH的面积,来得出关于x,y的函数关系式,然后根据函数的性质求出y取最小值时x的值,并求出此时y的值.
解:(1)连接FH,
∵△EGH≌△BCF,
∴HG=FC,∠G=∠BCF,
∴HG∥FC,
∴四边开FCGH是平行四边形,
∴FH∥CG,且FH=CG,
又∵EG=BC,
∴EG-EC=BC-EC,即CG=BE,
∴FH=BE,
∵FH∥CG,
∴∠DFH=∠DCG=90°,
由题意可知:CF=BE=a,
在Rt△DFH中,DF=3a-a=2a,FH=a,
∴DH==a;
(2)设BE=x,△DHE的面积为y,根据题意得:
y=S△CDE+S梯形CDHG-S△EGH=×3a(3a-x)+ (3a+x)x-×3a×x,
∴y=x2-ax+a2=(x-a)2+a2,
∴当x=a,即E为BC的中点时,y取得最小值,即△DHE的面积取得最小值,最小值是a2.