题目内容
【题目】一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.
(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?
(2)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该试验,发现摸到绿球的频率稳定于0.25,求n的值.
【答案】(1) 相同:(2)2.
【解析】分析:(1)n=1,袋子中有1个红球和1个白球,则从袋中随机摸出1个球,摸到红球与摸到白球的概率都为;(2)利用频率估计概率得到摸到红球的概率为0.25,则根据概率公式得到,然后解方程即可.
本题解析:
解:(1)当n=1时,袋中红球数量和白球数量相同,故摸到两种颜色的球的可能性相同.
(2)由题意得0.25=,即(2+n)×0.25=1,所以n=2.
练习册系列答案
相关题目
【题目】某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(如图所示).下表是活动进行中的一组统计数据:
转动转盘 的次数n | 100 | 150 | 200 | 500 | 800 | 1 000 |
落在“铅笔” 区域的次数m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“铅笔” 区域的频率 |
(1)计算并完成表格.
(2)请估计,当n很大时,落在“铅笔”区域的频率将会接近多少?
(3)假如你去转动该转盘一次,你获得哪种奖品的机会大?
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?