题目内容
如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是
A.16 B.15 C.14 D.13
【答案】
C。
【解析】根据在OB上的两个交点之间的距离为,根据勾股定理可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解:
如图,
开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,
然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,
∴一共有7条抛物线。
同理可得开口向上的抛物线也有7条。
∴满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=14。故选C。
练习册系列答案
相关题目