题目内容

【题目】如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.

(1)a= , b= , c=
(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;
(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= , AC= , BC= . (用含t的代数式表示)
(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.

【答案】
(1)-2;1;7
(2)4
(3)3t+3;5t+9;2t+6
(4)解:不变.

3BC﹣2AB=3(2t+6)﹣2(3t+3)=12


【解析】解:(1)∵|a+2|+(c﹣7)2=0,
∴a+2=0,c﹣7=0,
解得a=﹣2,c=7,
∵b是最小的正整数,
∴b=1;
所以答案是:﹣2,1,7.(2)(7+2)÷2=4.5,
对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;
所以答案是:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;
所以答案是:3t+3,5t+9,2t+6.
【考点精析】通过灵活运用数轴和两点间的距离,掌握数轴是规定了原点、正方向、单位长度的一条直线;同轴两点求距离,大减小数就为之.与轴等距两个点,间距求法亦如此.平面任意两个点,横纵标差先求值.差方相加开平方,距离公式要牢记即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网