题目内容
【题目】把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是( )
A. B. C. D.
【答案】B
【解析】
首先根据题意画出表格,然后由表格求得所有等可能的结果与数字x、y满足y=-x+5的情况,再利用概率公式求解即可求得答案.
列表得:
1 | 2 | 3 | 4 | |
1 | (1,1) | (1,2) | (1,3) | (1,4) |
2 | (2,1) | (2,2) | (2,3) | (2,4) |
3 | (3,1) | (3,2) | (3,3) | (3,4) |
4 | (4,1) | (4,2) | (4,3) | (4,4) |
∵共有16种等可能的结果,数字x、y满足y=-x+5的有(1,4),(2,3),(3,2),(4,1),
∴数字x、y满足y=-x+5的概率为:.
故选B.
练习册系列答案
相关题目