题目内容
【题目】如本题图①,在△ABC中,已知∠ABC=∠ACB=α.过点A作BC的平行线与∠ABC的平分线交于点D,连接CD.
(1)求∠ACD的大小;
(2)在线段CD的延长线上取一点F,以FD为角的一边作∠DFE=α,另一边交BD延长线于点E,若FD=kAD(如本题图②所示),试求的值(用含k的代数式表示).
【答案】(1)∠ACD=90°﹣;(2)=k2.
【解析】试题分析:(1)由∠ABC=∠ACB,BD平分∠ABC,得到∠1=∠2=,AB=AC,因为AD∥BC,推出∠2=∠3,得到∠3=∠1=,得到AB=AD.AC=AD=AB.于是得到∠ACD=∠ADC=,根据AD∥BC,∠CAD=ACB=α,得出结论∠ACD=∠ADC==90°﹣.
(2)过A作AH⊥BC于点H,得到∠AHB=90°.证出∠BAH=90°﹣α,因为AD∥BC,得出∠BDC+∠ADC=180°,然后证得对应角相等,得到相似三角形,根据相似三角形的性质得比例式求得结果.
试题解析:(1)∵∠ABC=∠ACB,BD平分∠ABC,∴∠1=∠2=,AB=AC,
∵AD∥BC,∴∠2=∠3,∴∠3=∠1=,∴AB=AD.
∴AC=AD=AB.∴∠ACD=∠ADC=,
又∵AD∥BC,∴∠CAD=ACB=α,
∴∠ACD=∠ADC==90°﹣;
(2)过A作AH⊥BC于点H,则∠AHB=90°.
∴∠BAH=90°﹣α,
∵AD∥BC,∴∠BDC+∠ADC=180°,即:∠BCA+∠ACD+∠CDB+∠3=180°,
由∠ACB=α,∠ACD=90°﹣,∠3=,
得:∠CDB=180°﹣α﹣(90°﹣)﹣=90°﹣α.
∴∠FDE=∠CDB=90°﹣α,∴∠BAH=∠FDE,∵∠ABH=∠DFE=α,
∴△ABH∽△DEF,
∵FD=kAD,AB=AD,∴S△DEF=k2S△BAH,
∵AD∥BC,∴S△BCD=S△ABC=2S△BAH,∴=k2,