题目内容

已知:如图,Rt△ABC,∠ACB=90°,点E是边BC上一点,过点E作FE⊥BC(垂足为E)交AB于点F,且EF=AF,以点E为圆心,EC长为半径作⊙E交BC于点D.
(1)求证:斜边AB是⊙E的切线;
(2)设若AB与⊙E相切的切点为G,AC=8,EF=5,连DA、DG,求S△ADG
(1)过点E作EG⊥AB于点G,连接EA;
∵AF=EF,∠FEA+∠AEC=90°,∠AEC+∠EAC=90°,
∴∠FEA=∠FAE,
∴∠FAE=∠EAC,
∴AE为角平分线,
∴EG=EC,
∴斜边AB是⊙E的切线.

(2)连CG与AE相交于点H,由切线长定理得到:AC=AG=8,
由EF=AF=5;得FG=AG-AF=8-5=3,
在Rt△EFG中,根据勾股定理得:EG=CE=
EF2-FG2
=4,
∴AE=
AC2+CE2
=4
5
,又
1
2
AE•GH=
1
2
AG•GE,
∴GH=
AG•GE
AE
=
8
5
5
,GC=2GH=
16
5
5

∴DG=
(2CE)2-CG2
=
8
5
5

∴SRt△DGC=
1
2
DG•CG=
64
5

由Rt△DGC的面积为
64
5

∵CD是直径,
∴∠DGC=90°,
∵AG、AC是⊙E切线,
∴AE⊥CG,
∴∠EHC=90°=∠DGC,
∴DGAE,
∴S△AGD=S△DGE=
1
2
SRt△DGC=
32
5

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网