题目内容

【题目】图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀把它均分成四个小长方形,然后按图②的形状拼成一个正方形.

(1)你认为图②中的阴影部分的正方形的边长等于多少?

(2)请用两种不同的方法求图②中阴影部分的面积.

(3)观察图②你能写出下列三个代数式之间的等量关系吗?

代数式:(mn)2,(mn)2mn.

(4)根据(3)题中的等量关系,解决如下问题:

已知ab=7,ab=5,求(ab)2的值.(写出过程)

【答案】解:(1)m-n;(2)详见解析;(3)(m+n2=(m-n2+4mn;(4)29.

【解析】

(1)观察可得阴影部分的正方形边长是m-n;

(2)方法1:边长为m+n的大正方形的面积减去4个长为m,宽为n的小长方形面积;

方法2:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积;

(3)由(2)可得结论(m+n)2=(m-n)2+4mn;

(4)由(a-b)2=(a+b)2-4ab求解.

(1)阴影部分的正方形边长是m-n

(2)阴影部分的面积就等于边长为m-n的小正方形的面积,

方法1:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,

即(m-n2=(m+n2-4mn

方法2:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,

即(m-n2=(m+n2-2m2n=(m+n2-4mn

(3)(m+n2=(m-n2+4mn

(4)(a-b2=(a+b2-4ab=49-4×5=29.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网