题目内容
【题目】如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F.
(1)求证:△FBD∽△FAC;
(2)如果BD平分∠ADC,BD=5,BC=2,求DE的长;
(3)如果∠CAD=60°,DC=DE,求证:AE=AF.
【答案】(1)见解析;(2);(3)见解析
【解析】
(1)可得出∠ADB=∠ACB,∠AFC=∠BFD,则结论得证;
(2)证明△BEC∽△BCD,可得,可求出BE长,则DE可求出;
(3)根据圆内接四边形的性质和三角形的内角和定理进行证明AB=AF;根据等腰三角形的判定与性质和圆周角定理可证明AE=AB,则结论得出.
(1)证明:∵∠ADB=∠ACB,∠AFC=∠BFD,
∴△FBD∽△FAC;
(2)解:∵BD平分∠ADC,
∴∠ADB=∠BDC,
∵∠ADB=∠ACB,
∴∠ACB=∠BDC,
∵∠EBC=∠CBD,
∴△BEC∽△BCD,
∴,
∴,
∴BE=,
∴DE=BD﹣BE=5﹣=;
(3)证明:∵∠CAD=60°,
∴∠CBD=60°,∠ACD=∠ABD,
∵DC=DE,
∴∠ACD=∠DEC,
∵∠ABC+∠ADC=∠ABC+∠ABF=180°,
∴∠FBD=180°,
∴∠ABF=∠ADC=120°
=120°﹣∠ACD
=120°﹣∠DEC
=120°﹣(60°+∠ADE)
=60°﹣∠ADE,
而∠F=60°﹣∠ACF,
∵∠ACF=∠ADE,
∴∠ABF=∠F,
∴AB=AF.
∵四边形ABCD内接于圆,
∴∠ABD=∠ACD,
又∵DE=DC,
∴∠DCE=∠DEC=∠AEB,
∴∠ABD=∠AEB,
∴AB=AE.
∴AE=AF.
练习册系列答案
相关题目