题目内容

【题目】如图,在ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,AOC=60°,则当ABM为直角三角形时,AM的长为__________

【答案】4或4或4

【解析】如图1,当AMB=90°时,O是AB的中点,AB=8,OM=OB=4,又∵∠AOC=BOM=60°,∴△BOM是等边三角形,BM=BO=4,RtABM中,AM==4

如图2,当AMB=90°时,O是AB的中点,AB=8,OM=OA=4,又∵∠AOC=60°,

∴△AOM是等边三角形,AM=AO=4;

如图3,当ABM=90°时,∵∠BOM=AOC=60°,∴∠BMO=30°,MO=2BO=2×4=8,

RtBOM中,BM==4RtABM中,AM==4,综上所述,当ABM为直角三角形时,AM的长为4或4或4.

故答案为:4或4或4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网