题目内容
【题目】如果关于x的方程x2-ax+a2-3=0至少有一个正根,则实数a的取值范围是( )
A. -2<a<2 B. <a≤2 C. <a≤2 D. ≤a≤2
【答案】C
【解析】
根据方程x2-ax+a2-3=0至少有一个正根,则方程一定有两个实数根,即△≥0,关于x的方程x2-ax+a2-3=0至少有一个正根?(1)当方程有两个相等的正根,(2)当方程有两个不相等的根,①若方程的两个根中只有一个正根,一个负根或零根,②若方程有两个正根,结合二次方程的根的情况可求.
∵△=a2-4(a2-3)=12-3a2
(1)当方程有两个相等的正根时,△=0,此时a=±2,
若a=2,此时方程x2-2x+1=0的根x=1符合条件,
若a=-2,此时方程x2+2x+1=0的根x=-1不符舍去,
(2)当方程有两个根时,△>0可得-2<a<2,
①若方程的两个根中只有一个正根,一个负根或零根,则有a2-3≤0,解可得-≤a≤,而a=-时不合题意,舍去.
所以-<a≤符合条件,
②若方程有两个正根,则,
解可得 a>,
综上可得,-<a≤2.
故选:C
练习册系列答案
相关题目