题目内容
如图是一张矩形纸片ABCD,AD=6cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=2cm,则DE=( )
A、2
| ||
B、4cm | ||
C、4
| ||
D、6cm |
分析:根据已知,得CE=4,从而根据勾股定理即可求得DE的长.
解答:解:∵AD=6cm,BE=2cm,
∴CE=4cm.
∴CD=CE=4cm.
根据勾股定理,得
DE=4
cm.
故选C.
∴CE=4cm.
∴CD=CE=4cm.
根据勾股定理,得
DE=4
2 |
故选C.
点评:此题主要是运用了折叠的性质和勾股定理.
练习册系列答案
相关题目