题目内容
如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论 ①MN∥BC,②MN=AM,下列说法正确的是
- A.①②都对
- B.①②都错
- C.①对②错
- D.①错②对
A
分析:根据题意,推出∠B=∠D=∠AMN,即可推出结论①,由AM=DA推出四边形AMND为菱形,因此推出②.
解答:∵平行四边形ABCD,
∴∠B=∠D=∠AMN,
∴MN∥BC,
∵AM=DA,
∴四边形AMND为菱形,
∴MN=AM.
故选A.
点评:本题主要考查翻折变换的性质、平行四边形的性质、菱形的判定和性质,平行线的判定,解题的关键在于熟练掌握有关的性质定理,推出四边形AMND为菱形.
分析:根据题意,推出∠B=∠D=∠AMN,即可推出结论①,由AM=DA推出四边形AMND为菱形,因此推出②.
解答:∵平行四边形ABCD,
∴∠B=∠D=∠AMN,
∴MN∥BC,
∵AM=DA,
∴四边形AMND为菱形,
∴MN=AM.
故选A.
点评:本题主要考查翻折变换的性质、平行四边形的性质、菱形的判定和性质,平行线的判定,解题的关键在于熟练掌握有关的性质定理,推出四边形AMND为菱形.
练习册系列答案
相关题目