题目内容

【题目】(问题提出)

学习了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对两个三角形满足两边和其中一边的对角对应相等的情形进行研究.

(初步思考)

我们不妨将问题用符号语言表示为:在△ABC△DEF中,AC=DFBC=EF∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角三种情况进行探究.

(深入探究)

第一种情况:当∠B是直角时,△ABC≌△DEF

1)如图,在△ABC△DEFAC=DFBC=EF∠B=∠E=90°,根据 ,可以知道Rt△ABC≌Rt△DEF

第二种情况:当∠B是钝角时,△ABC≌△DEF

2)如图,在△ABC△DEFAC=DFBC=EF∠B=∠E,且∠B∠E都是钝角,求证:△ABC≌△DEF

第三种情况:当∠B是锐角时,△ABC△DEF不一定全等.

3)在△ABC△DEFAC=DFBC=EF∠B=∠E,且∠B∠E都是锐角,请你用尺规在图中作出△DEF,使△DEF△ABC不全等.(不写作法,保留作图痕迹)

4∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC△DEF中,AC=DFBC=EF∠B=∠E,且∠B∠E都是锐角,若 ,则△ABC≌△DEF

【答案】1HL;(2)证明见解析;(3)作图见解析;(4∠B≥∠A

【解析】

1)解:HL

2)证明:如图,过点CCG⊥ABAB的延长线于G,过点FFH⊥DEDE的延长线于H

∵∠B=∠E,且∠B∠E都是钝角,

∴180°-∠B=180°-∠E

∠CBG=∠FEH

△CBG△FEH中,

∴△CBG≌△FEHAAS),

∴CG=FH

Rt△ACGRt△DFH中,

AC=DFCG=FH

∴Rt△ACG≌Rt△DFHHL),

∴∠A=∠D

△ABC△DEF中,

∴△ABC≌△DEFAAS);

3)解:如图,△DEF△ABC不全等;

4)解:若∠B≥∠A,则△ABC≌△DEF

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网