题目内容

【题目】如图,在ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则ABCD的周长为_____,面积为_____

【答案】39cm60cm2

【解析】

根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13cm,根据等腰三角形的性质得到AB=CD=AD=CD=6.5cm,从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.

BE、CE分别平分∠ABC、BCD,

∴∠1=3=ABC,DCE=BCE=BCD,

ADBC,ABCD,

∴∠2=3,BCE=CED,ABC+BCD=180°,

∴∠1=2,DCE=CED,3+BCE=90°,

AB=AE,CD=DE,BEC=90°,

RtBCE中,根据勾股定理得:BC=13cm,

根据平行四边形的对边相等,得到:AB=CD,AD=BC,

∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm;

EFBCF,根据直角三角形的面积公式得:EF=cm,

S平行四边形ABCD=BC·EF==60cm2

故答案为:39cm,60cm2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网