题目内容

是否存在某个实数m,使得方程x2+mx+2=0和x2+2x+m=0有且只有一个公共的实根?如果存在,求出这个实数m及两方程的公共实根;如果不存在,请说明理由.

解:假设存在符合条件的实数m,且设这两个方程的公共实数根为a,则

①-②,得
a(m-2)+(2-m)=0
(m-2)(a-1)=0
∴m=2 或a=1.
当m=2时,已知两个方程是同一个方程,且没有实数根,故m=2舍去;
当a=1时,代入②得m=-3,
把m=-3代入已知方程,求出公共根为x=1.
故实数m=-3,两方程的公共根为x=1.
分析:设两方程的公共根为a,然后将两方程相减,消去二次项,求出公共根和m的值.
点评:本题考查的是两个一元二次方程的公共根的问题,一般情况是将两方程相减求出公共根,再求出其中的字母系数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网