题目内容
(2005•南京)如图,已知半圆O的直径DE=12cm,在△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm,半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.(1)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?
(2)当△ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域与△ABC三边围成的区域有重叠部分,求重叠部分的面积.
【答案】分析:(1)随着半圆的运动分四种情况:①当点E与点C重合时,AC与半圆相切,②当点O运动到点C时,AB与半圆相切,③当点O运动到BC的中点时,AC再次与半圆相切,④当点O运动到B点的右侧时,AB的延长线与半圆所在的圆相切.分别求得半圆的圆心移动的距离后,再求得运动的时间.
(2)在1中的②,③中半圆与三角形有重合部分.在②图中重叠部分是圆心角为90°,半径为6cm的扇形,故可根据扇形的面积公式求解.在③图中,所求重叠部分面积为=S△POB+S扇形DOP.
解答:解:(1)①如图,当点E与点C重合时,AC⊥OE,OC=OE=6cm,所以AC与半圆O所在的圆相切,此时点O运动了2cm,所求运动时间为:t==1(s)
②如图,当点O运动到点C时,过点O作OF⊥AB,垂足为F.
在Rt△FOB中,∠FBO=30°,OB=12cm,则OF=6cm,即OF等于半圆O的半径,所以AB与半圆O所在的圆相切.此时点O运动了8cm,所求运动时间为:t==4(s)
③如图,当点O运动到BC的中点时,AC⊥OD,OC=OD=6cm,所以AC与半圆O所在的圆相切.此时点O运动了14cm,所求运动时间为:t==7(s).
④如图,当点O运动到B点的右侧,且OB=12cm时,过点O作OQ⊥AB,垂足为Q.在Rt△QOB中,∠OBQ=30°,则OQ=6cm,即OQ等于半圆O所在的圆的半径,
所以直线AB与半圆O所在的圆相切.此时点O运动了32cm,所求运动时间为:t==16(s).
(2)当△ABC的一边所在的直线与半圆O所在的圆相切时,半圆O与直径DE围成的区域与△ABC三边围成的区域有重叠部分的只有如图②与③所示的两种情形.
①如图②,设OA与半圆O的交点为M,易知重叠部分是圆心角为90°,半径为6cm的扇形,所求重叠部分面积为:S扇形EOM=π×62=9π(cm2)
②如图③,设AB与半圆O的交点为P,连接OP,过点O作OH⊥AB,垂足为H.
则PH=BH.在Rt△OBH中,∠OBH=30°,OB=6cm
则OH=3cm,BH=3cm,BP=6cm,S△POB=×6×3=9(cm2)
又因为∠DOP=2∠DBP=60°
所以S扇形DOP==6π(cm2)
所求重叠部分面积为:S△POB+S扇形DOP=9+6π(cm2)
点评:本题利用了直线与圆相切的概念,扇形的面积公式,直角三角形的面积公式,锐角三角函数的概念求解.
(2)在1中的②,③中半圆与三角形有重合部分.在②图中重叠部分是圆心角为90°,半径为6cm的扇形,故可根据扇形的面积公式求解.在③图中,所求重叠部分面积为=S△POB+S扇形DOP.
解答:解:(1)①如图,当点E与点C重合时,AC⊥OE,OC=OE=6cm,所以AC与半圆O所在的圆相切,此时点O运动了2cm,所求运动时间为:t==1(s)
②如图,当点O运动到点C时,过点O作OF⊥AB,垂足为F.
在Rt△FOB中,∠FBO=30°,OB=12cm,则OF=6cm,即OF等于半圆O的半径,所以AB与半圆O所在的圆相切.此时点O运动了8cm,所求运动时间为:t==4(s)
③如图,当点O运动到BC的中点时,AC⊥OD,OC=OD=6cm,所以AC与半圆O所在的圆相切.此时点O运动了14cm,所求运动时间为:t==7(s).
④如图,当点O运动到B点的右侧,且OB=12cm时,过点O作OQ⊥AB,垂足为Q.在Rt△QOB中,∠OBQ=30°,则OQ=6cm,即OQ等于半圆O所在的圆的半径,
所以直线AB与半圆O所在的圆相切.此时点O运动了32cm,所求运动时间为:t==16(s).
(2)当△ABC的一边所在的直线与半圆O所在的圆相切时,半圆O与直径DE围成的区域与△ABC三边围成的区域有重叠部分的只有如图②与③所示的两种情形.
①如图②,设OA与半圆O的交点为M,易知重叠部分是圆心角为90°,半径为6cm的扇形,所求重叠部分面积为:S扇形EOM=π×62=9π(cm2)
②如图③,设AB与半圆O的交点为P,连接OP,过点O作OH⊥AB,垂足为H.
则PH=BH.在Rt△OBH中,∠OBH=30°,OB=6cm
则OH=3cm,BH=3cm,BP=6cm,S△POB=×6×3=9(cm2)
又因为∠DOP=2∠DBP=60°
所以S扇形DOP==6π(cm2)
所求重叠部分面积为:S△POB+S扇形DOP=9+6π(cm2)
点评:本题利用了直线与圆相切的概念,扇形的面积公式,直角三角形的面积公式,锐角三角函数的概念求解.
练习册系列答案
相关题目