题目内容
【题目】如图,点A是双曲线在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为 .
【答案】y=-
【解析】
试题解析:连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,
设A点坐标为(a,),
∵A点、B点是正比例函数图象与双曲线y=的交点,
∴点A与点B关于原点对称,
∴OA=OB
∵△ABC为等腰直角三角形,
∴OC=OA,OC⊥OA,
∴∠DOC+∠AOE=90°,
∵∠DOC+∠DCO=90°,
∴∠DCO=∠AOE,
∵在△COD和△OAE中
∴△COD≌△OAE(AAS),
∴OD=AE=,CD=OE=a,
∴C点坐标为(-,a),
∵-a=-4,
∴点C在反比例函数y=-图象上.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:
成绩 | 45 | 46 | 47 | 48 | 49 | 50 |
人数 | 1 | 2 | 4 | 2 | 5 | 1 |
这此测试成绩的中位数和众数分别为( )
A. 47,49 B. 47.5,49 C. 48,49 D. 48,50