题目内容
【题目】计算1﹣2的结果是( )
A. ﹣1B. 1C. ﹣3D. 3
【答案】A
【解析】
原式利用有理数的减法法则计算即可求出值.
解:原式=1+(﹣2)=﹣(2﹣1)=﹣1,
故选:A.
【题目】已知点P在圆O内,且OP=4,则圆O的半径可以是( )
A.2B.3C.4D.5
【题目】如图,点A、O、B在同一条直线上,∠AOC=∠BOD,OE是∠BOC的平分线.
(1)若∠AOC=46°,求∠DOE的度数;
(2)若∠DOE=30°,求∠AOC的度数.
【题目】如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.
【题目】在一条笔直的公路上有、两地,甲从地去地,乙从地去地然后立即原路返回地,返回时的速度是原来的2倍,如图是甲、乙两人离地的距离(千米)和时间(小时)之间的函数图象.
请根据图象回答下列问题:
(1)、两地的距离是 千米, ;
(2)求的坐标,并解释它的实际意义;
(3)请直接写出当取何值时,甲乙两人相距15千米.
【题目】把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是( )A.线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线
【题目】已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.
(1)如图①,若∠AOC=30°,求∠DOE的度数;
(2)在图①中,若∠AOC=,直接写出∠DOE的度数(用含的代数式表示);
(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置,探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;
【题目】已知(m﹣3)x|m|﹣2+4=18是关于x的一元一次方程,则( )
A. m=1B. m=3C. m=﹣3D. m=±3
【题目】如图,在平面直角坐标系中,O是坐标原点,直线与x轴,y轴分别交于B,C两点,抛物线经过B,C两点,与x轴的另一个交点为点A,动点P从点A出发沿AB以每秒3个单位长度的速度向点B运动,运动时间为t(0<t<5)秒.
(1)求抛物线的解析式及点A的坐标;
(2)在点P从点A出发的同时,动点Q从点B出发沿BC以每秒3个单位长度的速度向点C运动,动点N从点C出发沿CA以每秒个单位长度的速度向点A运动,运动时间和点P相同.
①记△BPQ的面积为S,当t为何值时,S最大,最大值是多少?
②是否存在△NCQ为直角三角形的情形?若存在,求出相应的t值;若不存在,请说明理由.