ÌâÄ¿ÄÚÈÝ
ÒÑÖª£¬Rt¡÷ABCÔÚƽÃæÖ±½Ç×ø±êϵÖеÄλÖÃÈçͼËùʾ£¬¡ÏA=90¡ã£¬µãB¡¢C¶¼ÔÚxÖáÉÏ£¬ÇÒµãAµÄ×ø±êΪ£¨2£¬
£©£¬¡ÏABC=30¡ã£¬ÈôÅ×ÎïÏßy=ax2+bx+cÇ¡ºÃ¹ýA¡¢B¡¢CÈýµã£¬ÇÒÓëyÖá½»ÓÚµãD£®
£¨1£©ÇóµãB¡¢CµÄ×ø±êºÍÅ×ÎïÏßy=ax2+bx+cµÄ½âÎöʽ£»
£¨2£©ÈôµãEÊÇÅ×ÎïÏßy=ax2+bx+c¶Ô³ÆÖáÉÏÒ»¶¯µã£¬ÊÔÈ·¶¨µ±µãEÔںδ¦Ê±£¬¡÷AECµÄÖܳ¤×îС£¿×îСÊǶàÉÙ£¿
£¨3£©ÈôµãPΪÅ×ÎïÏßÔÚµÚÒ»ÏóÏÞͼÏóÉϵĶ¯µã£¬ÊÔÈ·¶¨µ±µãPÔںδ¦Ê±£¬ËıßÐÎPDBCµÄÃæ»ý×î´ó£¿²¢Çó³ö×î´óÃæ»ý£®
3 |
£¨1£©ÇóµãB¡¢CµÄ×ø±êºÍÅ×ÎïÏßy=ax2+bx+cµÄ½âÎöʽ£»
£¨2£©ÈôµãEÊÇÅ×ÎïÏßy=ax2+bx+c¶Ô³ÆÖáÉÏÒ»¶¯µã£¬ÊÔÈ·¶¨µ±µãEÔںδ¦Ê±£¬¡÷AECµÄÖܳ¤×îС£¿×îСÊǶàÉÙ£¿
£¨3£©ÈôµãPΪÅ×ÎïÏßÔÚµÚÒ»ÏóÏÞͼÏóÉϵĶ¯µã£¬ÊÔÈ·¶¨µ±µãPÔںδ¦Ê±£¬ËıßÐÎPDBCµÄÃæ»ý×î´ó£¿²¢Çó³ö×î´óÃæ»ý£®
·ÖÎö£º£¨1£©Ê×ÏȹýµãA×÷AF¡ÍxÖáÓÚµãF£¬ÓɵãAµÄ×ø±êΪ£¨2£¬
£©£¬¡ÏABC=30¡ã£¬ÀûÓÃÖ±½ÇÈý½ÇÐεÄÐÔÖÊ£¬¼´¿ÉÇóµÃµãBÓëCµÄ×ø±ê£¬È»ºóÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇóµÃ¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÓÉ£¨1£©£¬¿ÉÇóµÃÅ×ÎïÏߵĶԳÆÖᣬÓÖÓɵãB¡¢C¹ØÓÚÖ±Ïßx=1¶Ô³Æ£¬Çó¡÷AECµÄÖܳ¤µÄ×îСֵ£¬¼´ÎªÇóAE+EC+ACµÄ×îСֵ£¬ÓɶԳÆÐÔÖª£¬AE+ECµÄ×îСֵΪABµÄ³¤£¬¼´µ±µãEÔ˶¯µ½ABÓëÅ×ÎïÏ߶ԳÆÖáx=1µÄ½»µã´¦Ê±£¬¡÷AECµÄÖܳ¤×îС£¬¼Ì¶ø¿ÉÇóµÃ´ð°¸£»
£¨3£©Ê×ÏÈÁ¬½Ó½áPO£¬ÉèµãPµÄ×ø±êΪ£¨t£¬-
t2+
t+
£©£¬¹ýµãP·Ö±ðÏò xÖᣬyÖá×÷´¹Ïߣ¬´¹×ã·Ö±ðΪN¡¢G£¬ÓÉSËıßÐÎPDBC=S¡÷POC+S¡÷POD+S¡÷BOD£¬¼´¿ÉÇóµÃ´ð°¸£®
3 |
£¨2£©ÓÉ£¨1£©£¬¿ÉÇóµÃÅ×ÎïÏߵĶԳÆÖᣬÓÖÓɵãB¡¢C¹ØÓÚÖ±Ïßx=1¶Ô³Æ£¬Çó¡÷AECµÄÖܳ¤µÄ×îСֵ£¬¼´ÎªÇóAE+EC+ACµÄ×îСֵ£¬ÓɶԳÆÐÔÖª£¬AE+ECµÄ×îСֵΪABµÄ³¤£¬¼´µ±µãEÔ˶¯µ½ABÓëÅ×ÎïÏ߶ԳÆÖáx=1µÄ½»µã´¦Ê±£¬¡÷AECµÄÖܳ¤×îС£¬¼Ì¶ø¿ÉÇóµÃ´ð°¸£»
£¨3£©Ê×ÏÈÁ¬½Ó½áPO£¬ÉèµãPµÄ×ø±êΪ£¨t£¬-
| ||
3 |
2
| ||
3 |
3 |
½â´ð£º½â£º£¨1£©¹ýµãA×÷AF¡ÍxÖáÓÚµãF£¬ÔÚRt¡÷AFBÖУ¬
¡ß¡ÏABC=30¡ã£¬µãAµÄ×ø±êΪ£¨2£¬
£©£¬
¡àOF=2£¬AF=
£¬¡ÏACF=60¡ã£¬
¡àBF=
=3£¬
¡àOB=BF-OF=3-2=1£¬
¡àµãBµÄµã±êΪ£¨-1£¬0£©£¬
ÔÚRt¡÷AFCÖУ¬ÓÉ¡ÏACF=60¡ã£¬
¡àFC=
=1£¬
¡àµãCµÄ×ø±êΪ£¨3£¬0£©£¬
½«A¡¢B¡¢CÈýµã×ø±ê·Ö±ð´úÈëy=ax2+bx+cµÃ£º
£¬
½âµÃ£º
£¬
¡à¸ÃÅ×ÏߵĽâÎöʽΪ£ºy=-
x2+
x+
¡£¨4·Ö£©
£¨2£©¡ßy=-
x2+
x+
=-
£¨x-1£©2+
£¬
¡àÅ×ÎïÏߵĶԳÆÖáΪx=1£¬
¡àµãB¡¢C¹ØÓÚÖ±Ïßx=1¶Ô³Æ£¬
Çó¡÷AECµÄÖܳ¤µÄ×îСֵ£¬¼´ÎªÇóAE+EC+ACµÄ×îСֵ£¬
ÓɶԳÆÐÔÖª£¬AE+ECµÄ×îСֵΪABµÄ³¤£¬¼´µ±µãEÔ˶¯µ½ABÓëÅ×ÎïÏ߶ԳÆÖáx=1µÄ½»µã´¦Ê±£¬¡÷AECµÄÖܳ¤×îС£¬
ÓÉB£¨-1£¬0£©£¬A£¨2£¬
£©¿ÉµÃABËùÔÚÖ±ÏߵĽâÎöʽΪ£ºy=
x+
£¬¡£¨7·Ö£©
µ±x=1ʱ£¬y=
£¬
¹ÊµãEµÄ×ø±êΪ£¨1£¬
£©£¬
´Ëʱ£¬¡÷AECµÄÖܳ¤×îС£¬×îСֵΪAB+AC=2
+2¡£¨8·Ö£©
£¨3£©Á¬½Ó½áPO£¬ÉèµãPµÄ×ø±êΪ£¨t£¬-
t2+
t+
£©ÆäÖÐO£¼t£¼3£¬
¹ýµãP·Ö±ðÏò xÖᣬyÖá×÷´¹Ïߣ¬´¹×ã·Ö±ðΪN¡¢G£¬
ÓÉ£¨1£©Öª£¬µãDµÄ×ø±êΪ£¨0£¬
£©¡£¨9·Ö£©
ÔòSËıßÐÎPDBC=S¡÷POC+S¡÷POD+S¡÷BOD
=
¡ÁOC¡ÁPN+
¡ÁOD¡ÁPG+
¡ÁOB¡ÁOD
=
¡Á3¡Á£¨-
t2+
t+
£©+
¡Á
¡Át+
¡Á1¡Á
=-
(t-
)2+
¡£¨11·Ö£©
¹Êµ±t=
ʱ£¬ËıßÐÎPDBCµÄÃæ»ý×î´ó£¬×î´óÃæ»ýΪ
£¬
´ËʱµãPµÄ×ø±êΪ£¨
£¬
£©£®¡£¨12·Ö£©
¡ß¡ÏABC=30¡ã£¬µãAµÄ×ø±êΪ£¨2£¬
3 |
¡àOF=2£¬AF=
3 |
¡àBF=
AF |
tan30¡ã |
¡àOB=BF-OF=3-2=1£¬
¡àµãBµÄµã±êΪ£¨-1£¬0£©£¬
ÔÚRt¡÷AFCÖУ¬ÓÉ¡ÏACF=60¡ã£¬
¡àFC=
AF |
tan60¡ã |
¡àµãCµÄ×ø±êΪ£¨3£¬0£©£¬
½«A¡¢B¡¢CÈýµã×ø±ê·Ö±ð´úÈëy=ax2+bx+cµÃ£º
|
½âµÃ£º
|
¡à¸ÃÅ×ÏߵĽâÎöʽΪ£ºy=-
| ||
3 |
2
| ||
3 |
3 |
£¨2£©¡ßy=-
| ||
3 |
2
| ||
3 |
3 |
=-
| ||
3 |
4
| ||
3 |
¡àÅ×ÎïÏߵĶԳÆÖáΪx=1£¬
¡àµãB¡¢C¹ØÓÚÖ±Ïßx=1¶Ô³Æ£¬
Çó¡÷AECµÄÖܳ¤µÄ×îСֵ£¬¼´ÎªÇóAE+EC+ACµÄ×îСֵ£¬
ÓɶԳÆÐÔÖª£¬AE+ECµÄ×îСֵΪABµÄ³¤£¬¼´µ±µãEÔ˶¯µ½ABÓëÅ×ÎïÏ߶ԳÆÖáx=1µÄ½»µã´¦Ê±£¬¡÷AECµÄÖܳ¤×îС£¬
ÓÉB£¨-1£¬0£©£¬A£¨2£¬
3 |
| ||
3 |
| ||
3 |
µ±x=1ʱ£¬y=
2
| ||
3 |
¹ÊµãEµÄ×ø±êΪ£¨1£¬
2
| ||
3 |
´Ëʱ£¬¡÷AECµÄÖܳ¤×îС£¬×îСֵΪAB+AC=2
3 |
£¨3£©Á¬½Ó½áPO£¬ÉèµãPµÄ×ø±êΪ£¨t£¬-
| ||
3 |
2
| ||
3 |
3 |
¹ýµãP·Ö±ðÏò xÖᣬyÖá×÷´¹Ïߣ¬´¹×ã·Ö±ðΪN¡¢G£¬
ÓÉ£¨1£©Öª£¬µãDµÄ×ø±êΪ£¨0£¬
3 |
ÔòSËıßÐÎPDBC=S¡÷POC+S¡÷POD+S¡÷BOD
=
1 |
2 |
1 |
2 |
1 |
2 |
=
1 |
2 |
| ||
3 |
2
| ||
3 |
3 |
1 |
2 |
3 |
1 |
2 |
3 |
=-
| ||
2 |
3 |
2 |
25
| ||
8 |
¹Êµ±t=
3 |
2 |
25
| ||
8 |
´ËʱµãPµÄ×ø±êΪ£¨
3 |
2 |
5
| ||
4 |
µãÆÀ£º´ËÌ⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ¡¢Èý½ÇÐÎÖܳ¤×îСֵÎÊÌâÒÔ¼°ËıßÐÎÃæ»ý×îСֵÎÊÌ⣮´ËÌâ×ÛºÏÐÔºÜÇ¿£¬ÄѶȺܴ󣬽âÌâµÄ¹Ø¼üÊÇ×¢ÒâÊýÐνáºÏ˼ÏëÓë·½³Ì˼ÏëµÄÓ¦Óã¬×¢Òâ׼ȷ×÷³ö¸¨ÖúÏߣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿