题目内容
【题目】分解因式:ab2﹣2a2b+a3= .
【答案】a(a﹣b)2【解析】解:ab2﹣2a2b+a3,
=a(b2﹣2ab+a2),
=a(a﹣b)2.
【题目】如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.
(1)求证:四边形AECF是矩形;
(2)若AB=6,求菱形的面积.
【题目】为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:16 9 14 11 12 10 16 8 17 19,则这组数据的中位数和极差分别是
A.13,16 B.14,11 C.12,11 D.13,11
【题目】下列调查方式中适合的是( )
A. 要了解一批节能灯的使用寿命,采用普查方式
B. 调查你所在班级同学的身高,采用抽样调查方式
C. 环保部门调查长江某段水域的水质情况,采用抽样调查方式
D. 调查全市中学生每天的就寝时间,采用普查方式
【题目】已知一组数据1,2,x,4,5的平均数是3,则这组数据的方差是__.
【题目】(1)阅读并填空:如图①,BD、CD分别是△ABC的内角∠ABC、∠ACB的平分线.
试说明∠D=90°+∠A的理由.
解:因为BD平分∠ABC(已知),
所以∠1= (角平分线定义).
同理:∠2= .
因为∠A+∠ABC+∠ACB=180°,∠1+∠2+∠D=180°,( ),
所以∠D = (等式性质).
即:∠D=90°+∠A.
(2)探究,请直接写出结果,并任选一种情况说明理由:
(i)如图②,BD、CD分别是△ABC的两个外角∠EBC、∠FCB的平分线.试探究∠D与∠A之间的等量关系.
答:∠D与∠A之间的等量关系是 .
(ii)如图③,BD、CD分别是△ABC的一个内角∠ABC和一个外角∠ACE的平分线.试探究∠D与∠A之间的等量关系.
【题目】求下列各数的立方根:
(1)-125;
(2)0.027;
(3)(53)2.
【题目】足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )
A. 3场 B. 4场 C. 5场 D. 6场
【题目】分解因式:xy﹣x﹣y+1= .