题目内容
18、如图:是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即n=20)根时,需要的火柴棍总数为
630
根.分析:关键是通过归纳与总结,得到其中的规律,按规律求解.
解答:解:n=1时,有1个三角形,需要火柴的根数为:3×1;
n=2时,有3个三角形,需要火柴的根数为:3×(1+2);
n=3时,有6个三角形,需要火柴的根数为:3×(1+2+3);
…;
n=20时,需要火柴的根数为:3×(1+2+3+4+…+20)=630.
故答案为:630.
n=2时,有3个三角形,需要火柴的根数为:3×(1+2);
n=3时,有6个三角形,需要火柴的根数为:3×(1+2+3);
…;
n=20时,需要火柴的根数为:3×(1+2+3+4+…+20)=630.
故答案为:630.
点评:此题考查的知识点是图形数字的变化类问题,本题的关键是弄清到底有几个小三角形.
练习册系列答案
相关题目