题目内容

【题目】如图,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是

【答案】3
【解析】解:如图作DH⊥AC垂足为H与AG交于点E,

∵四边形ABCD是菱形,
∵AB=AD=CD=BC=6,
∵∠B=60°,
∴∠ADC=∠B=60°,
∴△ADC是等边三角形,
∵AG是中线,
∴∠GAD=∠GAC
∴点H关于AG的对称点F在AD上,此时EF+ED最小=DH.
在RT△DHC中,∵∠DHC=90°,DC=6,∠CDH= ∠ADC=30°,
∴CH= DC=3,DH= = =3
∴EF+DE的最小值=DH=3
故答案为3
作DH⊥AC垂足为H与AG交于点E,点H关于AG的对称点为F,此时EF+ED最小=DH,先证明△ADC是等边三角形,在RT△DCH中利用勾股定理即可解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网