题目内容
【题目】如图,一次函数y1=-x+b的图象与反比例函数y2= (x>0)的图象交于A、B两点,与x轴交于点C,且点A的坐标为(1,2),点B的横坐标为3.
(1)在第一象限内,当x取何值时,y1>y2?(根据图直接写出结果)
(2)求反比例函数的解析式及△AOB的面积.
【答案】(1)1<x<3;(2),面积为.
【解析】
(1)根据交点坐标,由函数图象即可求解;
(2)运用待定系数法,求得一次函数和反比例函数的解析式,再根据解方程组求得C(0,4),最后根据S△AOB=S△AOC-S△BOC进行计算即可求解.
(1)根据图象得:在第一象限内,当1<x<3时,y1>y2.
(2)把A(1,2)代入y2=中得k2=1×2=2,
∴反比例函数的解析式为y2=,
分别过点A、B作AE⊥x轴于E,BF⊥x轴于F,则AE=yA=2,
把xB=3代入y2=中,得yB=,则BF=,
把A(1,2)代入y1=x+b中,得:+b=2,
∴b=.
∴一次函数的解析式为y1=x+;
当yc=0时,x+=0,得:x=4,则OC=4,
∴S△AOB=S△AOC-S△BOC=OC(AEBF)= ×4(2)=.
【题目】小方家住户型呈长方形,平面图如下(单位:米),现准备铺设地面,三间卧室铺设木地板,其它区城铺设地砖.
(1)求a的值.
(2)铺设地面需要木地板和地砖各多少平方米(用含的代数式表示)?
(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米,装修公司有两种活动方案,如表:
活动方案 | 木地板价格 | 地砖价格 | 总安装费 |
A | 8折 | 8.5折 | 2000元 |
B | 9折 | 8.5折 | 免收 |
已知卧室2的面积是21平方米,则小方家应选择哪种活动,使铺设地面的总费用(包括材料费及安装费)更低?
【题目】目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:
| 进价元只 | 售价元只 |
甲型 | 25 | 30 |
乙型 | 45 | 60 |
如何进货,进货款恰好为46000元?
为确保乙型节能灯顺利畅销,在的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为,请问乙型节能灯需打几折?