题目内容
【题目】边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.
(1)求抛物线的解析式;
(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?
(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.
【答案】(1);(2)1或;(3)M1(2,1),N1(4,2)或M2(2,3),N2(0,2)或M3(2,),N3(2,).
【解析】
试题分析:(1)根据正方形的性质,可得OA=OC,∠AOC=∠DGE,根据余角的性质,可得∠OCD=∠GDE,根据全等三角形的判定与性质,可得EG=OD=1,DG=OC=2,根据待定系数法,可得函数解析式;
(2)分类讨论:若△DFP∽△COD,根据相似三角形的性质,可得∠PDF=∠DCO,根据平行线的判定与性质,可得∠PDO=∠OCP=∠AOC=90,根据矩形的判定与性质,可得PC的长;若△PFD∽△COD,根据相似三角形的性质,可得∠DPF=∠DCO,=,根据等腰三角形的判定与性质,可得DF于CD的关系,根据相似三角形的相似比,可得PC的长;
(3)分类讨论:MDNE,MNDE,NDME,根据一组对边平行且相等的四边形式平行四边,可得答案.
试题解析:(1)过点E作EG⊥x轴于G点.∵四边形OABC是边长为2的正方形,D是OA的中点,∴OA=OC=2,OD=1,∠AOC=∠DGE=90°,∵∠CDE=90°,∴∠ODC+∠GDE=90°,∵∠ODC+∠OCD=90°,∴∠OCD=∠GDE,在△OCD和△GED中,∵∠COD=∠DGE,∠OCD=∠GDE,DC=DE,∴△ODC≌△GED(AAS),∴EG=OD=1,DG=OC=2,∴点E的坐标为(3,1),∵抛物线的对称轴为直线AB即直线x=2,∴可设抛物线的解析式为,将C、E点的坐标代入解析式,得:,解得:,抛物线的解析式为;
(2)①若△DFP∽△COD,则∠PDF=∠DCO,∴PD∥OC,∴∠PDO=∠OCP=∠AOC=90°,∴四边形PDOC是矩形,∴PC=OD=1,∴t=1;
②若△PFD∽△COD,则∠DPF=∠DCO,=,∴∠PCF=90°﹣∠DCO=90﹣∠DPF=∠PDF,∴PC=PD,∴DF=CD,∵,∴CD=,∴DF=,∵=,∴PC=PD=×=,t=,
综上所述:t=1或t=时,以点P,F,D为顶点的三角形与△COD相似;
(3)存在,
四边形MDEN是平行四边形时,M1(2,1),N1(4,2);
四边形MNDE是平行四边形时,M2(2,3),N2(0,2);
四边形NDME是平行四边形时,M3(2,),N3(2,).
【题目】在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:
成 绩 | 45 | 46 | 47 | 48 | 49 | 50 |
人 数 | 1 | 2 | 4 | 2 | 5 | 1 |
这此测试成绩的中位数和众数分别为( )
A.47, 49
B.48, 49
C.47.5, 49
D.48, 50
【题目】从开始,连续的奇数相加,它们和的情况如表所示:
加数的个数 | 连续奇数的和 |
()当
()用含的代数式表示个连续奇数之和的公式, __________.
用含的代数式表示从开始的第个连续奇数是__________.
()根据规律计算.