题目内容
设a,b是方程x2+x-2009=0的两个实数根,则a2+2a+b的值为
A.2006 | B.2007 | C.2008 | D.2009 |
C
分析:由于a2+2a+b=(a2+a)+(a+b),故根据方程的解的意义,求得(a2+a)的值,由根与系数的关系得到(a+b)的值,即可求解.
解答:解:∵a是方程x2+x-2009=0的根,
∴a2+a=2009;
由根与系数的关系得:a+b=-1,
∴a2+2a+b=(a2+a)+(a+b)=2009-1=2008.
故选C.
解答:解:∵a是方程x2+x-2009=0的根,
∴a2+a=2009;
由根与系数的关系得:a+b=-1,
∴a2+2a+b=(a2+a)+(a+b)=2009-1=2008.
故选C.
练习册系列答案
相关题目