题目内容

一座拱桥的轮廓是抛物线型(如图1),拱高6m,跨度20m,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图2),求抛物线的解析式;
(2)求支柱EF的长度;
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.精英家教网
分析:(1)根据题目可知A,B,C的坐标,设出抛物线的解析式代入可求解.
(2)设F点的坐标为(5,yF)可求出支柱MN的长度.
(3)设DN是隔离带的宽,NG是三辆车的宽度和.做GH垂直AB交抛物线于H则可求解.
解答:精英家教网解:(1)根据题目条件A,B,C的坐标分别是(-10,0),(10,0),(0,6),
设抛物线的解析式为y=ax2+c,
将B,C的坐标代入y=ax2+c,
6=c
0=100a+c

解得
a=-
3
50
c=6

所以抛物线的表达式y=-
3
50
x2+6.

(2)可设F(5,yF),于是
yF=-
3
50
×52+6=4.5
从而支柱EF的长度是10-4.5=5.5米.

(3)设DN是隔离带的宽,NG是三辆车的宽度和,
则G点坐标是(7,0).
过G点作GH垂直AB交抛物线于H,
则yH=-
3
50
×72+6=3.06>3.
根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.
点评:本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网