题目内容

【题目】某片果园有果树80棵,现准备多种一些果树提高产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树(棵),它们之间的函数关系如图所示.

1)求y之间的函数关系式;

2)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?

【答案】1y=﹣0.5x+80;(2当增种果树40棵时果园的最大产量是7200千克.

【解析】试题分析:1)函数的表达式为y=kx+b,把点(1274),(2866)代入解方程组即可.
2)构建二次函数,利用二次函数性质解决问题.

试题解析:(1)设函数的表达式为y=kx+b,该一次函数过点(1274),(2866),

,解得

∴该函数的表达式为y=﹣0.5x+80

2)根据题意,得w=﹣0.5x+80)(80+x=﹣0.5 x2+40 x+6400=﹣0.5x﹣402+7200

a=﹣0.50,则抛物线开口向下,函数有最大值

∴当x=40时,w最大值为7200千克.

∴当增种果树40棵时果园的最大产量是7200千克.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网