题目内容
锐角三角形△ABC的外心为O,外接圆半径为R,延长AO,BO,CO,分别与对边BC,CA,AB交于D,E,F;证明:
+
+
=
.
1 |
AD |
1 |
BE |
1 |
CF |
2 |
R |
分析:延长AD交⊙O于M,由于AD,BE,CF共点O.根据S△ABC=S△ABO+S△ACO+S△BCO、
=
,
=
,
=
可以推知
+
+
=1①;然后由OD=R-DM、AM=2R求得
=1-
;同理
=1-
,
=1-
;最后将其代入①式求得
+
+
=
.
OD |
AD |
S△OBC |
S△ABC |
OE |
BE |
S△OAC |
S△BAC |
OF |
CF |
S△OAB |
S△CAB |
OD |
AD |
OE |
BE |
OF |
CF |
OD |
AD |
R |
AD |
OE |
BE |
R |
BE |
OF |
CF |
R |
CF |
1 |
AD |
1 |
BE |
1 |
CF |
2 |
R |
解答:证明:延长AD交⊙O于M,由于AD,BE,CF共点O,
=
,
=
,
=
,…5’
则
+
+
=1…①…10’
而
=
=1-
=1-
,…15’
同理有,
=1-
,
=1-
,…20’
代入①得,(1-
)+(1-
)+(1-
)=1…②
所以
+
+
=
. …25’
OD |
AD |
S△OBC |
S△ABC |
OE |
BE |
S△OAC |
S△BAC |
OF |
CF |
S△OAB |
S△CAB |
则
OD |
AD |
OE |
BE |
OF |
CF |
而
OD |
AD |
R-DM |
2R-DM |
R |
2R-DM |
R |
AD |
同理有,
OE |
BE |
R |
BE |
OF |
CF |
R |
CF |
代入①得,(1-
R |
AD |
R |
BE |
R |
CF |
所以
1 |
AD |
1 |
BE |
1 |
CF |
2 |
R |
点评:本题考查了面积以及等积变换.解答本题时,通过作辅助线AM,将AD、OD、CO、CF、BO、BE的长度与半径R联系在一起,从而通过化简
+
+
=1,证得结论
+
+
=
.
OD |
AD |
OE |
BE |
OF |
CF |
1 |
AD |
1 |
BE |
1 |
CF |
2 |
R |
练习册系列答案
相关题目