题目内容
如图①,我们在“格点”直角坐标系上可以清楚看到:要找AB或DE的长度,显然是转化为求Rt△ABC或Rt△DEF的斜边长.
下面:以求DE为例来说明如何解决:
从坐标系中发现:D(-7,5),E(4,-3).所以DF=|5-(-3)|=8,EF=|4-(-7)|=11,所以由勾股定理可得:DE=
=
.
下面请你参与:
(1)在图①中:AC=______,BC=______,AB=______.
(2)在图②中:设A(x1,y1),B(x2,y2),试用x1,x2,y1,y2表示AC=______,BC=______,AB=______.
(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:
已知:A(2,1),B(4,3),C为坐标轴上的点,且使得△ABC是以AB为底边的等腰三角形.请求出C点的坐标.
下面:以求DE为例来说明如何解决:
从坐标系中发现:D(-7,5),E(4,-3).所以DF=|5-(-3)|=8,EF=|4-(-7)|=11,所以由勾股定理可得:DE=
82+112 |
185 |
下面请你参与:
(1)在图①中:AC=______,BC=______,AB=______.
(2)在图②中:设A(x1,y1),B(x2,y2),试用x1,x2,y1,y2表示AC=______,BC=______,AB=______.
(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:
已知:A(2,1),B(4,3),C为坐标轴上的点,且使得△ABC是以AB为底边的等腰三角形.请求出C点的坐标.
(1)AC=4,BC=3,AB=
=5;
(2)结合图形可得:AC=y1-y2,BC=x1-x2,AB=
.
(3)若点C在x轴上,设点C的坐标为(x,0),
则AC=BC,即
=
,
解得:x=5,
即点C的坐标为(5,0);
若点C在y轴上,设点C的坐标为(0,y),
则AC=BC,即
=
,
解得:y=5,
即点C的坐标为(0,5).
综上可得点C的坐标为(5,0)或(0,5).
故答案为:4,3,5;y1-y2,x1-x2,A
.
AC2+BC2 |
(2)结合图形可得:AC=y1-y2,BC=x1-x2,AB=
(x1-x2)2+(y1-y2)2 |
(3)若点C在x轴上,设点C的坐标为(x,0),
则AC=BC,即
(2-x)2+(1-0)2 |
(4-x)2+(3-0)2 |
解得:x=5,
即点C的坐标为(5,0);
若点C在y轴上,设点C的坐标为(0,y),
则AC=BC,即
(2-0)2+(1-y)2 |
(4-0)2+(3-y)2 |
解得:y=5,
即点C的坐标为(0,5).
综上可得点C的坐标为(5,0)或(0,5).
故答案为:4,3,5;y1-y2,x1-x2,A
(x1-x2)2+(y1-y2)2 |
练习册系列答案
相关题目