题目内容
【题目】已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.
(1)求证:无论k取何值,此方程总有实数根;
(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?
【答案】(1)详见解析;(2)k=或2.
【解析】
(1)计算判别式的值,利用完全平方公式得到△=(2k﹣3)2≥0,然后根据判别式的意义得到结论;
(2)利用求根公式解方程得到x1=2k﹣1,x2=2,再根据等腰三角形的性质得到2k﹣1=2或2k﹣1=3,然后分别解关于k的方程即可.
(1)∵△=(2k+1)2﹣4×4(k﹣)=4k2﹣12k+9=(2k﹣3)2≥0,
∴该方程总有实数根;
(2)
∴x1=2k﹣1,x2=2,
∵a、b、c为等腰三角形的三边,
∴2k﹣1=2或2k﹣1=3,
∴k=或2.
练习册系列答案
相关题目