题目内容
【题目】如图,平行四边形ABCD中,BE⊥CD,BF⊥AD,垂足分别为E、F,CE=2,DF=1,∠EBF=60°,则这个平行四边形ABCD的面积是( )
A. 2B. 2
C. 3D. 12
【答案】D
【解析】
根据四边形的内角和等于360°,求出∠D=120°,根据平行四边形的性质得到∠A=∠C=60°,进一步求出∠ABF=∠EBC=30°,根据CE=2,DF=1,求出BC、AB的长,根据勾股定理求出BE的长,根据平行四边形的面积公式即可求出答案.
解:如图
∵BE⊥CD,BF⊥AD,
∴∠BEC=∠BFD=90°,
∵∠EBF=60°,
∵∠D+∠BED+∠BFD+∠EBF=360°,
∴∠D=120°,
∵平行四边形ABCD,
∴DC∥AB,AD∥BC,∠A=∠C
∴∠A=∠C=180°-120°=60°,
∴∠ABF=∠EBC=30°,
∴AD=BC=2EC=4
在△BEC中由勾股定理得:BE=2,
在△ABF中AF=4-1=3,
∵∠ABF=30,
∴AB=6,
∴平行四边形ABCD的面积是ABBE=6×2=12.
故答案为:12
练习册系列答案
相关题目
【题目】二次函数(是常数,)的自变量与函数值的部分对应值如下表:
… | 0 | 1 | 2 | … | |||
… | … |
且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,正确结论的个数是( )
A. 0B. 1C. 2D. 3