题目内容
【题目】把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).
(1)填空:t的值为 (用含m的代数式表示)
(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;
(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.
【答案】(1)2m﹣1;(2)C2:y=x2﹣4x;(3)0<a或a≥1或a≤﹣.
【解析】
(1)C1:y=ax22ax3a=a(x1)24a,顶点(1,4a)围绕点P(m,0)旋转180°的对称点为(2m1,4a),即可求解;(2)分≤t<1、1≤t≤、t>三种情况,分别求解,(3)分a>0、a<0两种情况,分别求解.
解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,
顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a),
C2:y=﹣a(x﹣2m+1)2+4a,函数的对称轴为:x=2m﹣1,
t=2m﹣1,
故答案为:2m﹣1;
(2)a=﹣1时,
C1:y=﹣(x﹣1)2+4,
①当≤t<1时,
x=时,有最小值y2=,
x=t时,有最大值y1=﹣(t﹣1)2+4,
则y1﹣y2=﹣(t﹣1)2+4﹣=1,无解;
②1≤t≤时,
x=1时,有最大值y1=4,
x=时,有最小值y2=﹣(t﹣1)2+4,
y1﹣y2=≠1(舍去);
③当t>时,
x=1时,有最大值y1=4,
x=t时,有最小值y2=﹣(t﹣1)2+4,
y1﹣y2span>=(t﹣1)2=1,
解得:t=0或2(舍去0),
故C2:y=(x﹣2)2﹣4=x2﹣4x;
(3)m=0,
C2:y=﹣a(x+1)2+4a,
点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),
当a>0时,a越大,则OD越大,则点D′越靠左,
当C2过点A′时,y=﹣a(0+1)2+4a=1,解得:a=,
当C2过点D′时,同理可得:a=1,
故:0<a≤或a≥1;
当a<0时,
当C2过点D′时,﹣3a=1,解得:a=﹣,
故:a≤﹣;
综上,故:0<a≤或a≥1或a≤﹣.