题目内容
【题目】如图,正比例函数的图象过点.直线沿y轴平行移动,与x轴,y轴分别交于点B,C,与直线OA交于点D.
(1)若点D在线段OA上(含端点),求b的取值范围;
(2)当点A关于直线BC的对称点A恰好落在y轴上时,求的面积.
【答案】(1);(2)
【解析】
(1)将O点和A点的坐标分别代入y=x+b,即可求得b的值,从而求得b的取值范围;
(2)根据直线y=x+b易求得OB=OC,即可得出∠OCB=45°,根据轴对称的性质易求得∠ACD=45°.即可求得∠ACO=90°,从而求得C的纵坐标为-3,得出C的坐标为(0,-3),即可求得直线y=x-3,然后联立方程求得交点D的坐标,根据三角形面积公式即可求得△OBD的面积.
解:(1)当点D和点O重合时,
将点代人中,得;
当点D和点A重合时,将点代入中,
得,即,
的取值范围是.
(2)将点代入中,得,即
直线OA的解析式为.
在中,令,则,
,即,
令,则,
,
又
.
点A关于直线BC的对称点恰好落在y轴上,
垂直平分
,
,
即.将点代入中,得,
直线BC的解析式为.
由,得,
点.
.
【题目】有这样一个问题:探究函数的图象与性质.小华根据学习函数的经验,对函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:
(1)在函数中,自变量x的取值范围是________.
x | … | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | m | … |
①求m的值;
②在平面直角坐标系xOy中,描出以上表中各组对应值为坐标的点,并根据描出的点,画出该函数的图象.
(2)结合函数图象写出该函数的一条性质:________.
【题目】某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.
设小明计划今年夏季游泳次数为x(x为正整数).
(I)根据题意,填写下表:
游泳次数 | 10 | 15 | 20 | … | x |
方式一的总费用(元) | 150 | 175 | ______ | … | ______ |
方式二的总费用(元) | 90 | 135 | ______ | … | ______ |
(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?
(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.