题目内容
【题目】如图,Rt△ABC中,∠ACB=90°,斜边AB边上的高CD与角平分线AE交于点F,经过垂足D的直线分别交直线CA,BC于点M,N.
(1)若AC=3,BC=4,AB=5,求CD的长;
(2)当∠AMN=32°,∠B=38°时,求∠MDB的度数;
(3)当∠AMN=∠BDN时,写出图中所有与∠CDN相等的角,并选择其中一组进行证明.
【答案】(1)CD;(2)∠MDB=160°;(3)与∠CDN相等的角有∠AFD,∠CFE,∠AEC,∠MNC;证明见解析.
【解析】
(1)根据三角形面积公式即可得到结论;
(2)根据三角形的内角和定理求出∠MNC,进而得出∠MNB,再利用三角形外角的性质即可得到结论;
(3)首先根据角平分线的定义和平行线的判定和性质证明AE∥MN,然后结合同角的余角相等可证明所有结论.
解:(1)在Rt△ABC中,∠ACB=90°,
∴S△ABCACBC3×4=6.
∵CD是斜边AB上是高,
∴S△ABCABCD5×CD=6,
∴CD;
(2)∵∠ACB=90°,∠AMN=32°,
∴∠MNC=180°﹣∠ACB﹣∠AMN=58°,
∴∠MNB=180°﹣∠MNC=122°,
∴∠MDB=∠MNB+∠B=122°+38°=160°;
(3)与∠CDN相等的角有∠AFD,∠CFE,∠AEC,∠MNC;
理由:∵∠AMN=∠BDN,∠BDN=∠ADM,
∴∠AMN=∠ADM,
∴∠CAB=∠AMN+∠ADM=2∠AMN,
∵AE是∠CAB的角平分线,
∴∠CAB=2∠CAE,
∴∠AMN=∠CAE,
∴AE∥MN,
∴∠CDN=∠AFD=∠CFE,
∵∠ACB=90°,
∴∠AMN+∠MNC=90°,
∵CD⊥AB,
∴∠BDN+∠CDN=90°,
∵∠AMN=∠BDN,
∴∠CDN=∠MNC,
∵AE∥MN,
∴∠AEC=∠MNC,
∴∠CDN=∠AEC.