题目内容
【题目】如图,平行四边形ABCD中,对角线AC,BD交于O,EO⊥AC,
(1)若△ABE的周长为10cm,求平行四边形ABCD的周长,
(2)若∠DAB=108°,AE平分∠BAC,试求∠ACB的度数.
【答案】
(1)解:∵四边形ABCD是平行四边形,
∴OA=OC.
∵OE⊥AC,
∴AE=CE.
∴△ABE的周长为AB+AC=10,
根据平行四边形的对边相等得,
平行四边形ABCD的周长为2×10=20cm.
(2)解:∵AE平分∠BAC,
∴∠BAE=∠CAE,
∵△ACE是等腰三角形,
∴∠CAE=∠ACB
∵四边形ABCD是平行四边形,
∴∠ACB=∠CAD,
∴∠DAB=∠BAE+∠CAE+∠CAD=3∠CAD=108°,
∴∠ACB=∠CAD=36°.
【解析】(1)根据平行四边形的对角线互相平分得:OA=OC.又OE⊥AC,根据线段垂直平分线上的点到线段两个端点的距离相等得:AE=CE.故△ABE的周长为AB+BC的长.最后根据平行四边形的对边相等得:ABCD的周长为2×10=20cm.(2)由已知条件和平行四边形的性质易求∠DAB=∠BAE+∠CAE+∠CAD=3∠CAD=108°,进而可求出∠ACB的度数.
【考点精析】解答此题的关键在于理解平行四边形的性质的相关知识,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.
练习册系列答案
相关题目