题目内容

【题目】已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.

(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;
(2)当△AEF是直角三角形时,求a、b的值;
(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.

【答案】
(1)

解:∵四边形ABCD是正方形,

∴∠ACF=∠DCD=90°,

∵AC是正方形ABCD的对角线,

∴∠ACB=∠ACD=45°,

∴∠ACF=∠ACE,

∵∠EAF被对角线AC平分,

∴∠CAF=∠CAE,

在△ACF和△ACE中,

∴△ACF≌△ACE,

∴CE=CE,

∵CE=a,CF=b,

∴a=b;


(2)

解:当△AEF是直角三角形时,

①当∠AEF=90°时,

∵∠EAF=45°,

∴∠AFE=45°,

∴△AEF是等腰直角三角形,

∴AF2=2FE2=2(CE2+CF2),

AF2=2(AD2+BE2),

∴2(CE2+CF2)=2(AD2+BE2),

∴CE2+CF2=AD2+BE2

∴CE2+CF2=16+(4+CE)2

∴CF2=8(CE+4)①

∵∠AEB+∠BEF=90°,∠AEB+∠BAE=90°,

∴∠BEF=∠BAE,

∴△ABE∽△ECF,

∴4CF=CE(CE+4)②,

联立①②得,CE=4,CF=8

∴a=4,b=8,

②当∠AFE=90°时,

同①的方法得,CF=4,CE=8,

∴a=8,b=4.


(3)

ab=32,

理由:如图,

∵∠BAG+∠AGB=90°,∠AFC+∠CGF=90°,∠AGB=∠CGF,

∴∠BAG=∠AFC,

∵∠BAC=45°,

∴∠BAG+∠CAF=45°,

∴∠AFC+∠CAF=45°,

∵∠AFC+∠AEC=180°﹣(∠CFE+∠CEF)﹣∠EAF=180°﹣90°﹣45°=45°,

∴∠CAF=∠AEC,

∵∠ACF=∠ACE=135°,

∴△ACF∽△ECA,

∴EC×CF=AC2=2AB2=32

∴ab=32


【解析】(1)当∠EAF被对角线AC平分时,易证△ACF≌△ACE,因此CF=CE,即a=b.(2)分两种情况进行计算,①先用勾股定理得出CF2=8(CE+4)①,再用相似三角形得出4CF=CE(CE+4)②,两式联立解方程组即可;(3)先判断出∠AFC+∠CAF=45°,再判断出∠AFC+∠AEC=45°,从而求出∠AEC,而∠ACF=∠ACE=135°,得到△ACF∽△ECA,即可.此题是四边形综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,相似三角形的性质和判定,解本题的关键是判断△ACF∽△ECA,也是本题的难点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网