题目内容
【题目】已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:
(1)△BFC≌△DFC;
(2)AD=DE.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)由CF平分∠BCD可知∠BCF=∠DCF,然后通过SAS就能证出△BFC≌△DFC.
(2)要证明AD=DE,连接BD,证明△BAD≌△BED则可.AB∥DF∠ABD=∠BDF,又BF=DF∠DBF=∠BDF,∴∠ABD=∠EBD,BD=BD,再证明∠BDA=∠BDC则可,容易推理∠BDA=∠DBC=∠BDC.
试题解析:(1)∵CF平分∠BCD,
∴∠BCF=∠DCF.
在△BFC和△DFC中,
∴△BFC≌△DFC(SAS).
(2)连接BD.
∵△BFC≌△DFC,
∴BF=DF,∴∠FBD=∠FDB.
∵DF∥AB,
∴∠ABD=∠FDB.
∴∠ABD=∠FBD.
∵AD∥BC,
∴∠BDA=∠DBC.
∵BC=DC,
∴∠DBC=∠BDC.
∴∠BDA=∠BDC.
又∵BD是公共边,
∴△BAD≌△BED(ASA).
∴AD=DE.
练习册系列答案
相关题目