题目内容
【题目】已知四边形ABCD的四个顶点都在⊙O上,对角线AC和BD交于点E.
(1)若∠BAD和∠BCD的度数之比为1:2,求∠BCD的度数;
(2)若AB=3,AD=5,∠BAD=60°,点C为劣弧BD的中点,求弦AC的长;
(3)若⊙O的半径为1,AC+BD=3,且AC⊥BD.求线段OE的取值范围.
【答案】(1)120°;(2);(3)≤OE≤
【解析】
(1)利用圆内接四边形对角互补构建方程解决问题即可.
(2)将△ACD绕点C逆时针旋转120°得△CBE,根据旋转的性质得出∠E=∠CAD=30°,BE=AD=5,AC=CE,求出A、B、E三点共线,解直角三角形求出即可;
(3)由题知 AC⊥BD,过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,判断出四边形OMEN是矩形,进而得出OE2=2﹣(AC2+BD2),设AC=m,构建二次函数,利用二次函数的性质解决问题即可.
解:(1)如图1中,
∵四边形ABCD是⊙O的内接四边形,
∴∠A+∠C=180°,
∵∠A:∠C=1:2,
∴设∠A=x,∠C=2x,则x+2x=180°,
解得,x=60°,
∴∠C=2x=120°.
(2)如图2中,
∵A、B、C、D四点共圆,∠BAD=60°,
∴∠BCD=180°﹣60°=120°,
∵点C为弧BD的中点,
∴BC=CD,∠CAD=∠CAB=∠BAD=30°,
将△ACD绕点C逆时针旋转120°得△CBE,如图2所示:
则∠E=∠CAD=∠CAB=30°,BE=AD=5,AC=CE,
∴∠ABC+∠EBC=(180°﹣∠CAB﹣∠ACB)+(180°﹣∠E﹣∠BCE)=360°﹣(∠CAB+∠ACB+∠ABC)=360°﹣180°=180°,
∴A、B、E三点共线,
过C作CM⊥AE于M,
∵AC=CE,
∴AM=EM=AE=(AB+AD)=×(3+5)=4,
在Rt△AMC中,AC=.
(3) 过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,
∵OA=OD=1,OM2=OA2﹣AM2,ON2=OD2﹣DN2,AM=AC,DN=BD,AC⊥BD,
∴四边形OMEN是矩形,
∴ON=ME,OE2=OM2+ME2,
∴OE2=OM2+ON2=2﹣(AC2+BD2)
设AC=m,则BD=3﹣m,
∵⊙O的半径为1,AC+BD=3,
∴1≤m≤2,
OE2=2﹣ [(AC+BD)2﹣2AC×BD]=﹣m2+m﹣=﹣(m﹣)2+,
∴≤OE2≤,
∴≤OE≤.