题目内容
【题目】如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是( )
A.2
B.
C.
D.
【答案】C
【解析】解:∵OP平分∠AOB,∠AOB=60°, ∴∠AOP=∠COP=30°,
∵CP∥OA,
∴∠AOP=∠CPO,
∴∠COP=∠CPO,
∴OC=CP=2,
∵∠PCE=∠AOB=60°,PE⊥OB,
∴∠CPE=30°,
∴CE= CP=1,
∴PE= = ,
∴OP=2PE=2 ,
∵PD⊥OA,点M是OP的中点,
∴DM= OP= .
故选:C.
【考点精析】通过灵活运用角平分线的性质定理和含30度角的直角三角形,掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半即可以解答此题.
练习册系列答案
相关题目